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Wavelet Toolbox Product Description
Analyze and synthesize signals and images using wavelets

Wavelet Toolbox provides functions and apps for analyzing and synthesizing signals and
images. The toolbox includes algorithms for continuous wavelet analysis, wavelet
coherence, synchrosqueezing, and data-adaptive time-frequency analysis. The toolbox
also includes apps and functions for decimated and nondecimated discrete wavelet
analysis of signals and images, including wavelet packets and dual-tree transforms.

Using continuous wavelet analysis, you can study the way spectral features evolve over
time, identify common time-varying patterns in two signals, and perform time-localized
filtering. Using discrete wavelet analysis, you can analyze signals and images at different
resolutions to detect changepoints, discontinuities, and other events not readily visible in
raw data. You can compare signal statistics on multiple scales, and perform fractal
analysis of data to reveal hidden patterns.

With Wavelet Toolbox you can obtain a sparse representation of data, useful for denoising
or compressing the data while preserving important features. Many toolbox functions
support C/C++ code generation for desktop prototyping and embedded system
deployment.

Key Features
• Time-frequency analysis using continuous wavelet transform, wavelet coherence,

constant-Q transform, empirical mode decomposition, and Hilbert-Huang transform
• Wavelet Signal Denoiser app for denoising time-series data
• Decimated wavelet packet and wavelet transforms, including wavelet leaders for

fractal analysis
• Nondecimated techniques, including dual-tree, stationary wavelet, maximal overlap

discrete wavelet, and wavelet packet transforms
• Signal, image denoising, and compression, including matching pursuit
• Lifting method for constructing custom wavelets

1 Getting Started with Wavelet Toolbox Software
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Installing Wavelet Toolbox Software
To install this toolbox on your computer, see the appropriate platform-specific MATLAB®

installation guide. To determine if the Wavelet Toolbox software is already installed on
your system, check for a subfolder named wavelet within the main toolbox folder.

Wavelet Toolbox software can perform signal or image analysis. For indexed images or
truecolor images (represented by m-by-n-by-3 arrays of uint8), all wavelet functions use
floating-point operations. To avoid Out of Memory errors, be sure to allocate enough
memory to process various image sizes.

The memory can be real RAM or can be a combination of RAM and virtual memory. See
your operating system documentation for how to configure virtual memory.

System Recommendations
While not a requirement, we recommend you obtain Signal Processing Toolbox™ and
Image Processing Toolbox™ software to use in conjunction with the Wavelet Toolbox
software. These toolboxes provide complementary functionality that give you maximum
flexibility in analyzing and processing signals and images.

This manual makes no assumption that your computer is running any other MATLAB
toolboxes.

Platform-Specific Details
Some details of the use of the Wavelet Toolbox software may depend on your hardware or
operating system.

Windows Fonts

We recommend you set your operating system to use “Small Fonts.” Set this option by
clicking the Display icon in your desktop's Control Panel (accessible through the Settings
> Control Panel submenu). Select the Configuration option, and then use the Font
Size menu to change to Small Fonts. You'll have to restart Windows® for this change to
take effect.

Fonts for Non-Windows Platforms

We recommend you set your operating system to use standard default fonts.

 Installing Wavelet Toolbox Software
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However, for all platforms, if you prefer to use large fonts, some of the labels in the
Wavelet Analyzer app figures may be illegible when using the default display mode of the
toolbox. To change the default mode to accept large fonts, use the wtbxmngr function.
(For more information, see either the wtbxmngr help or its reference page.)

Mouse Compatibility

Wavelet Toolbox software was designed for three distinct types of mouse control.

Left Mouse Button Middle Mouse Button Right Mouse Button
Make selections. Activate
controls.

Display cross-hairs to show
position-dependent information.

Translate plots up and
down, and left and right.

Note The functionality of the middle mouse button and the right mouse button can be
inverted depending on the platform.

1 Getting Started with Wavelet Toolbox Software

1-4



What is a Wavelet?
A wavelet is a waveform of effectively limited duration that has an average value of zero
and nonzero norm.

Many signals and images of interest exhibit piecewise smooth behavior punctuated by
transients. Speech signals are characterized by short bursts encoding consonants
followed by steady-state oscillations indicative of vowels. Natural images have edges.
Financial time series exhibit transient behavior, which characterize rapid upturns and
downturns in economic conditions. Unlike the Fourier basis, wavelet bases are adept at
sparsely representing piecewise regular signals and images, which include transient
behavior.

Compare wavelets with sine waves, which are the basis of Fourier analysis. Sinusoids do
not have limited duration — they extend from minus to plus infinity. While sinusoids are
smooth and predictable, wavelets tend to be irregular and asymmetric.

Fourier analysis consists of breaking up a signal into sine waves of various frequencies.
Similarly, wavelet analysis is the breaking up of a signal into shifted and scaled versions
of the original (or mother) wavelet.

Just looking at pictures of wavelets and sine waves, you can see intuitively that signals
with sharp changes might be better analyzed with an irregular wavelet than with a
smooth sinusoid.

It also makes sense that local features can be described better with wavelets that have
local extent. The following example illustrates this for a simple signal consisting of a sine
wave with a discontinuity.

Localize Discontinuity in Sine Wave
This example shows wavelet analysis can localize a discontinuity in a sine wave.

 What is a Wavelet?
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Create a 1-Hz sine wave sampled at 100 Hz. The duration of the sine wave is one second.
The sine wave has a discontinuity at t = 0 . 5 seconds.

t = linspace(0,1,100)';
x = sin(2*pi*t);
x1 = x-0.15;
y = zeros(size(x));
y(1:length(y)/2) = x(1:length(y)/2);
y(length(y)/2+1:end) = x1(length(y)/2+1:end);
stem(t,y,'markerfacecolor',[0 0 1]); 
xlabel('Seconds'); 
ylabel('Amplitude');

1 Getting Started with Wavelet Toolbox Software
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Obtain the nondecimated discrete wavelet transform of the sine wave using the 'sym2'
wavelet and plot the wavelet (detail) coefficients along with the original signal.

[swa,swd] = swt(y,1,'sym2');
subplot(211)
stem(t,y,'markerfacecolor',[0 0 1]); 
title('Original Signal');
subplot(212)
stem(t,swd,'markerfacecolor',[0 0 1]);
title('Level 1 Wavelet Coefficients');

Compare the Fourier coefficient magnitudes for the 1-Hz sine wave with and without the
discontinuity.

 What is a Wavelet?
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dftsig = fft([x y]);
dftsig = dftsig(1:length(y)/2+1,:);
df = 100/length(y);
freq = 0:df:50;
stem(freq,abs(dftsig));
xlabel('Hz'); ylabel('Magnitude');
legend('sine wave','sine wave with discontinuity');

There is minimal difference in the magnitudes of the Fourier coefficients. Because the
discrete Fourier basis vectors have support over the entire time interval, the discrete
Fourier transform does not detect the discontinuity as efficiently as the wavelet
transform.

1 Getting Started with Wavelet Toolbox Software
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Compare the level 1 wavelet coefficients for the sine wave with and without the
discontinuity.

[swax,swdx] = swt(x,1,'sym2');
subplot(211)
stem(t,swd); title('Sine Wave with Discontinuity (Wavelet Coefficients)');
subplot(212)
stem(t,swdx); title('Sine Wave (Wavelet Coefficients)');

The wavelet coefficients of the two signals demonstrate a significant difference. Wavelet
analysis is often capable of revealing characteristics of a signal or image that other
analysis techniques miss, like trends, breakdown points, discontinuities in higher
derivatives, and self-similarity. Furthermore, because wavelets provide a different view of

 What is a Wavelet?

1-9



data than those presented by Fourier techniques, wavelet analysis can often significantly
compress or denoise a signal without appreciable degradation.

1 Getting Started with Wavelet Toolbox Software
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Choose a Wavelet
The type of wavelet analysis best suited for your work depends on what you want to do
with the data. This topic focuses on 1-D data, but you can apply the same principles to 2-D
data.

Time-Frequency Analysis
If your goal is to perform a detailed time-frequency analysis, choose the continuous
wavelet transform (CWT).

• The CWT is superior to the short-time Fourier transform (STFT) for signals in which
the instantaneous frequency grows rapidly, such as in a hyperbolic chirp.

• The CWT is good at localizing transients in nonstationary signals.

In terms of implementation, scales are discretized more finely in the CWT than in the
discrete wavelet transform (DWT). See “Continuous and Discrete Wavelet Transforms” on
page 1-47 for more details.

Wavelets Supported for Time-Frequency Analysis

To obtain the continuous wavelet transform of your data, use the cwt function. You can
use the wname argument of this function to specify the type of wavelet best suited for
your data. By default, cwt uses the generalized Morse wavelet family. This family is
defined by two parameters. You can vary the parameters to recreate many commonly
used wavelets.

Wavelet Features wname
Generalized Morse Wavelet Can vary two parameters to

change time and frequency
spread

'morse' (default)

Analytic Morlet (Gabor)
Wavelet

Equal variance in time and
frequency

'amor'

Bump Wavelet Wider variance in time,
narrower variance in
frequency

'bump'

All the wavelets in the table are analytic. Analytic wavelets are wavelets with one-sided
spectra, and are complex valued in the time domain. These wavelets are a good choice for
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obtaining a time-frequency analysis using the CWT. Because the wavelet coefficients are
complex valued, the CWT provides phase information. cwt supports analytic and anti-
analytic wavelets. See “Time-Frequency Analysis with the Continuous Wavelet Transform”
for additional information.

Multiresolution Analysis
In a multiresolution analysis (MRA), you approximate a signal at progressively coarser
scales while recording the differences between approximations at consecutive scales. You
create the approximations and the differences by taking the discrete wavelet transform
(DWT) of the signal. The DWT provides a sparse representation for many natural signals.
Approximations are formed by comparing the signal with scaled and translated copies of a
scaling function. Differences between consecutive scales, also known as details, are
captured using scaled and translated copies of a wavelet. On a log2 scale, the difference
between consecutive scales is always 1. In the case of the CWT, differences between
consecutive scales are finer.

When generating the MRA, you can either subsample (decimate) the approximation by a
factor of 2 every time you increase the scale or not. Each option offers advantages and
disadvantages. If you subsample, you end up with the same number of wavelet
coefficients as the original signal. In the decimated DWT, translations are integer
multiples of scale. For the nondecimated DWT, translations are integer shifts. A
nondecimated DWT provides a redundant representation of the original data, but not as
redundant as the CWT. Your application not only influences your choice of wavelet, but
also which version of the DWT to use.

Energy Preservation

If preserving energy in the analysis stage is important, you must use an orthogonal
wavelet. An orthogonal transform preserves energy. Consider using an orthogonal wavelet
with compact support. Keep in mind that except for the Haar wavelet, orthogonal
wavelets with compact support are not symmetric. The associated filters have nonlinear
phase. This table lists supported orthogonal wavelets. You can use the wname argument in
all the discrete wavelet transform functions to specify the type of wavelet best suited for
your data. See wavemngr('read') for all wavelet family names.
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Orthogonal
Wavelet

Features wname See Also

Coiflet Scaling function and
wavelets have same
number of vanishing
moments

'coifN' for N = 1,
2, ..., 5

N/A

Daubechies Nonlinear phase;
energy concentrated
near the start of
their support

'dbN' for N = 1,
2, ..., 45

dbaux, Extremal
Phase Wavelet
Coefficients on page
1-25

Fejér-Korovkin Filters constructed to
minimize the
difference between a
valid scaling filter
and the ideal sinc
lowpass filter; are
especially useful in
discrete (decimated
and undecimated)
wavelet packet
transforms.

'fkN' for N = 4,
6, 8, 14, 18, 22

N/A

Haar Symmetric; special
case of Daubechies;
useful for edge
detection

'haar' ('db1') N/A

Symlet Least asymmetric;
nearly linear phase

'symN' for N = 2,
3, ..., 45

symaux, Symlets and
Phase on page 1-19

Use waveinfo to learn more about individual wavelet families. For example,
waveinfo('db').

Depending on how you address border distortions, the DWT might not conserve energy in
the analysis stage. See dwtmode and “Border Effects” for more information. The maximal
overlap discrete wavelet transform modwt and maximal overlap discrete wavelet packet
transform modwpt do conserve energy. The wavelet packet decomposition wpdec does not
conserve energy.
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Feature Detection

If you want to find closely spaced features, choose wavelets with smaller support, such as
haar, db2, or sym2. The support of the wavelet should be small enough to separate the
features of interest. Wavelets with larger support tend to have difficulty detecting closely
spaced features. Using wavelets with large support can result in coefficients that do not
distinguish individual features. For an example, see “Effect of Wavelet Support on Noisy
Data” on page 1-27. If your data has sparsely spaced transients, you can use wavelets
with larger support.

Analysis of Variance

If your goal is to conduct an analysis of variance, the maximal overlap discrete wavelet
transform (MODWT) is suited for the task. The MODWT is a variation of the standard
DWT.

• The MODWT conserves energy in the analysis stage.
• The MODWT partitions variance across scales. For examples, see “Wavelet Analysis of

Financial Data” and “Wavelet Changepoint Detection”.
• The MODWT requires an orthogonal wavelet, such as a Daubechies wavelet or symlet.
• The MODWT is a shift-invariant transform. Shifting the input data shifts the wavelet
coefficients by an identical amount. The decimated DWT is not shift invariant. Shifting
the input changes the coefficients and can redistribute energy across scales.

See modwt and modwtmra for more information. See also “Comparing MODWT and
MODWTMRA” on page 1-31.

Redundancy

Taking the decimated DWT, wavedec, of a signal using an orthonormal family of wavelets
provides a minimally redundant representation of the signal. There is no overlap in
wavelets within and across scales. The number of coefficients equals the number of signal
samples. Minimally redundant representations are a good choice for compression, when
you want to remove features that are not perceived.

The CWT of a signal provides a highly redundant representation of a signal. There is
significant overlap between wavelets within and across scales. Also, given the fine
discretization of the scales, the cost to compute the CWT and store the wavelet
coefficients is significantly greater than the DWT. The maximal overlap DWT modwt is also
a redundant transform but the redundancy factor is usually significantly less than the
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CWT. Redundancy tends to reinforce signal characteristics and features you want to
examine, such as frequency breaks or other transient events.

If your work requires representing a signal with minimal redundancy, use wavedec. If
your work requires a redundant representation, use modwt or modwpt. For an example,
see “Continuous and Discrete Wavelet Analysis of Frequency Break”.

Denoising
An orthogonal wavelet, such as a Symlet or Daubechies wavelet, is a good choice for
denoising signals. A biorthogonal wavelet can also be good for image processing.
Biorthogonal wavelet filters have linear phase which is a very critical for image
processing. Using a biorthogonal wavelet filter will not introduce visual distortions in the
image.

• An orthogonal transform does not color white noise. If white noise is provided as input
to an orthogonal transform, the output is white noise. Performing a DWT with a
biorthogonal wavelet colors white noise.

• An orthogonal transform preserves energy.

To learn if a wavelet family is orthogonal, use waveinfo. For example,
waveinfo('sym').

The sym4 wavelet is the default wavelet used in the wdenoise function and the Wavelet
Signal Denoiser app.

Compression
If your work involves signal or image compression, consider using a biorthogonal wavelet.
This table lists the supported biorthogonal wavelets with compact support. You can use
the wname argument in all the discrete wavelet transform functions to specify the
biorthogonal wavelet best suited for your data.
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Biorthogonal Wavelet Features wname
Biorthogonal Spline Compact support;

symmetric filters; linear
phase

'biorNr.Nd' where Nr
and Nd are the numbers of
vanishing moments for the
reconstruction and
decomposition filters,
respectively; see
waveinfo('bior') for
supported values

Reverse Biorthogonal Spline Compact support;
symmetric filters; linear
phase

'rbioNd.Nr' where Nr
and Nd are the numbers of
vanishing moments for the
reconstruction and
decomposition filters,
respectively; see
waveinfo('rbio') for
supported values

Having two scaling function-wavelet pairs, one pair for analysis and another for synthesis,
is useful for compression.

• Biorthogonal wavelet filters are symmetric and have linear phase.
• The wavelets used for analysis can have many vanishing moments. A wavelet with N

vanishing moments is orthogonal to polynomials of degree N-1. Using a wavelet with
many vanishing moments results in fewer significant wavelet coefficients.
Compression is improved.

• The dual wavelets used for synthesis can have better regularity. The reconstructed
signal is smoother.

Using an analysis filter with fewer vanishing moments than a synthesis filter can
adversely affect compression. For an example, see “Image Reconstruction with
Biorthogonal Wavelets” on page 1-38.

When using biorthogonal wavelets, energy is not conserved at the analysis stage. See
“Orthogonal and Biorthogonal Filter Banks” for additional information.
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General Considerations
Wavelets have properties that govern their behavior. Depending on what you want to do,
some properties can be more important.

Orthogonality

If a wavelet is orthogonal, the wavelet transform preserves energy. Except for the Haar
wavelet, no orthogonal wavelet with compact support is symmetric. The associated filter
has nonlinear phase.

Vanishing Moments

A wavelet with N vanishing moments is orthogonal to polynomials of degree N-1. For an
example, see “Wavelets and Vanishing Moments” on page 1-42. The number of vanishing
moments and the oscillation of the wavelet have a loose relationship. The greater number
of vanishing moments a wavelet has, the more the wavelet oscillates.

Names for many wavelets are derived from the number of vanishing moments. For
example, db6 is the Daubechies wavelet with six vanishing moments and sym3 is the
symlet with three vanishing moments. For coiflet wavelets, coif3 is the coiflet with six
vanishing moments. For Fejér-Korovkin wavelets, fk8 is the Fejér-Korovkin wavelet with a
length 8 filter. Biorthogonal wavelet names are derived from the number of vanishing
moments the analysis wavelet and synthesis wavelet each have. For instance, bior3.5 is
the biorthogonal wavelet with three vanishing moments in the synthesis wavelet and five
vanishing moments in the analysis wavelet. To learn more, see waveinfo and wavemngr.

The number of vanishing moments also affects the support of a wavelet. Daubechies
proved that a wavelet with N vanishing moments must have a support of at least length
2N-1.

Regularity

Regularity is related to how many continuous derivatives a function has. Intuitively,
regularity can be considered a measure of smoothness. To detect an abrupt change in the
data, a wavelet must be sufficiently regular. For a wavelet to have N continuous
derivatives, the wavelet must have at least N+1 vanishing moments. See “Detecting
Discontinuities and Breakdown Points” for an example. If your data is relatively smooth
with few transients, a more regular wavelet might be a better fit for your work.
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See Also
Wavelet Signal Denoiser | dwtmode | waveinfo | wavemngr | wdenoise

More About
• Understanding Wavelets, Part 1: What Are Wavelets
• Understanding Wavelets, Part 2: Types of Wavelet Transforms
• Understanding Wavelets, Part 3: An Example Application of the Discrete Wavelet

Transform
• Understanding Wavelets, Part 4: An Example Application of the Continuous Wavelet

Transform
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Least Asymmetric Wavelet and Phase
For a given support, the orthogonal wavelet with a phase response that most closely
resembles a linear phase filter is called least asymmetric. Symlets are examples of least
asymmetric wavelets. They are modified versions of the classic Daubechies db wavelets.
In this example you will show that the order 4 symlet has a nearly linear phase response,
while the order 4 Daubechies wavelet does not.

First plot the order 4 symlet and order 4 Daubechies scaling functions. While neither is
perfectly symmetric, note how much more symmetric the symlet is.

[phi_sym,~,xval_sym]=wavefun('sym4',10);
[phi_db,~,xval_db]=wavefun('db4',10);
subplot(2,1,1)
plot(xval_sym,phi_sym)
title('sym4 - Scaling Function')
grid on
subplot(2,1,2)
plot(xval_db,phi_db)
title('db4 - Scaling Function')
grid on
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Generate the filters associated with the order 4 symlet and Daubechies wavelets.

scal_sym = symaux(4,sqrt(2));
scal_db = dbaux(4,sqrt(2));

Compute the frequency response of the scaling synthesis filters.

[h_sym,w_sym] = freqz(scal_sym);
[h_db,w_db] = freqz(scal_db);

To avoid visual discontinuities, unwrap the phase angles of the frequency responses and
plot them. Note how well the phase angle of the symlet filter approximates a straight line.

h_sym_u = unwrap(angle(h_sym));
h_db_u = unwrap(angle(h_db));
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figure
plot(w_sym/pi,h_sym_u,'.')
hold on
plot(w_sym([1 end])/pi,h_sym_u([1 end]),'r')
grid on
xlabel('Normalized Frequency ( x \pi rad/sample)')
ylabel('Phase (radians)')
legend('Phase Angle of Frequency Response','Straight Line')
title('Symlet Order 4 - Phase Angle')

figure
plot(w_db/pi,h_db_u,'.')
hold on
plot(w_db([1 end])/pi,h_db_u([1 end]),'r')
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grid on
xlabel('Normalized Frequency ( x \pi rad/sample)')
ylabel('Phase (radians)')
legend('Phase Angle of Frequency Response','Straight Line')
title('Daubechies Order 4 - Phase Angle')

The sym4 and db4 wavelets are not symmetric, but the biorthogonal wavelet is. Plot the
scaling function associated with the bior3.5 wavelet. Compute the frequency response
of the synthesis scaling filter for the wavelet and verify that it has linear phase.

[~,~,phi_bior_r,~,xval_bior]=wavefun('bior3.5',10);
figure
plot(xval_bior,phi_bior_r)
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title('bior3.5 - Scaling Function')
grid on

[LoD_bior,HiD_bior,LoR_bior,HiR_bior] = wfilters('bior3.5');
[h_bior,w_bior] = freqz(LoR_bior);
h_bior_u = unwrap(angle(h_bior));
figure
plot(w_bior/pi,h_bior_u,'.')
hold on
plot(w_bior([1 end])/pi,h_bior_u([1 end]),'r')
grid on
xlabel('Normalized Frequency ( x \pi rad/sample)')
ylabel('Phase (radians)')
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legend('Phase Angle of Frequency Response','Straight Line')
title('Biorthogonal 3.5 - Phase Angle')

See Also
dbaux | symaux
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Extremal Phase
This example demonstrates that for a given support, the cumulative sum of the squared
coefficients of a scaling filter increase more rapidly for an extremal phase wavelet than
other wavelets.

First, set the order to 15 and generate the scaling filter coefficients for the Daubechies
wavelet and Symlet. Both wavelets have support of length 29.

n = 15;
[~,~,LoR_db,~] = wfilters('db15');
[~,~,LoR_sym,~] = wfilters('sym15');

Next, generate the scaling filter coefficients for the order 5 Coiflet. This wavelet also has
support of length 29.

[~,~,LoR_coif,~] = wfilters('coif5');

Confirm the sum of the coefficients for all three wavelets equals 2.

sqrt(2)-sum(LoR_db)

ans = 2.2204e-16

sqrt(2)-sum(LoR_sym)

ans = 0

sqrt(2)-sum(LoR_coif)

ans = 2.2204e-16

Plot the cumulative sums of the squared coefficients. Note how rapidly the Daubechies
sum increases. This is because its energy is concentrated at small abscissas. Since the
Daubechies wavelet has extremal phase, the cumulative sum of its squared coefficients
increases more rapidly than the other two wavelets.

plot(cumsum(LoR_db.^2),'rx-')
hold on
plot(cumsum(LoR_sym.^2),'mo-')
plot(cumsum(LoR_coif.^2),'b*-')
legend('Daubechies','Symlet','Coiflet')
title('Cumulative Sum')
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See Also
dbaux | symaux
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Effect of Wavelet Support on Noisy Data
In this example you demonstrate an instance of discontinuities in noisy data being
represented more sparsely using a Haar wavelet than when using a wavelet with larger
support. This example requires Signal Processing Toolbox.

Create a noisy square wave with 512 samples. Plot the square wave.

n = 512;
t = 0:0.001:(n*0.001)-0.001;
yn = square(2*pi*10*t)+0.02*randn(size(t));
plot(yn)
grid on
title('Noisy Signal')
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Obtain the maximal overlap discrete wavelet transform (MODWT) of the signal using the
haar wavelet. The haar wavelet has a support of length equal to 1

modhaar = modwt(yn,'haar');

Obtain the multiresolution analysis from the haar MODWT matrix and plot the first-level
details.

mrahaar = modwtmra(modhaar,'haar');
figure
hs = stem(mrahaar(1,:));
grid on
hs.Marker = 'none';
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hs.ShowBaseLine = 'off';
title('First-Level MRA Details Using Haar Wavelet')

Obtain the MODWT of the signal by using the db4 wavelet. The db4 wavelet has a
support of length equal to 7.

moddb4 = modwt(yn,'db4');

Obtain the multiresolution analysis from the db4 MODWT matrix and plot the first-level
details. The discontinuities are represented less sparsely using the db4 wavelet than the
haar wavelet.

mradb4 = modwtmra(modhaar,'db4');
figure
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hs = stem(mradb4(1,:));
grid on
hs.Marker = 'none';
hs.ShowBaseLine = 'off';
title('First-Level MRA Details Using db4 Wavelet')

See Also
modwt | modwtmra | waveinfo
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Comparing MODWT and MODWTMRA
This example demonstrates the differences between the functions MODWT and
MODWTMRA. The MODWT partitions a signal's energy across detail coefficients and
scaling coefficients. The MODWTMRA projects a signal onto wavelet subspaces and a
scaling subspace.

Choose the 'sym6' wavelet. Load and plot an ECG waveform. The ECG data is taken from
the MIT-BIH Arrhythmia Database.

load mit200
wv = 'sym6';
plot(ecgsig)
grid on
title(['Signal Length = ',num2str(length(ecgsig))])
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Take the MODWT of the signal.

wtecg = modwt(ecgsig,wv);

The input data are samples of a function f (x) evaluated at N-many time points. The
function can be expressed as a linear combination of the scaling function ϕ(x) and wavelet

ψ(x)at varying scales and translations: f (x) = ∑
k = 0

N − 1
ck 2− J0/2ϕ(2− J0 x− k) + ∑

j = 1

J0
f j(x) where

f j(x) = ∑
k = 0

N − 1
d j, k 2− j/2 ψ(2− jx− k) and J0 is the number of levels of wavelet decomposition.

The first sum is the coarse scale approximation of the signal, and the f j(x) are the details
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at successive scales. MODWT returns the N-many coefficients {ck}and the ( J0 × N)-many
detail coefficients {d j, k} of the expansion. Each row in wtecg contains the coefficients at
a different scale.

When taking the MODWT of a signal of length N, there are floor(log2(N))-many levels of
decomposition (by default). Detail coefficients are produced at each level. Scaling
coefficients are returned only for the final level. In this example, since N = 10000,
J0 = floor(log2(10000)) = 13 and the number of rows in wtecg is J0 + 1 = 13 + 1 = 14.

The MODWT partitions the energy across the various scales and scaling coefficients:

X 2 = ∑
j = 1

J0
W j

2 + V J0
2 where X is the input data, W j are the detail coefficients at

scale j, and V J0 are the final-level scaling coefficients.

Compute the energy at each scale, and evaluate their sum.

energy_by_scales = sum(wtecg.^2,2);
Levels = {'D1';'D2';'D3';'D4';'D5';'D6';'D7';'D8';'D9';'D10';'D11';'D12';'D13';'A13'};
energy_table = table(Levels,energy_by_scales);
disp(energy_table)

    Levels    energy_by_scales
    ______    ________________

    'D1'          0.31592     
    'D2'           2.6504     
    'D3'           28.802     
    'D4'           159.37     
    'D5'            300.5     
    'D6'           431.33     
    'D7'           444.93     
    'D8'           182.37     
    'D9'           45.381     
    'D10'          11.578     
    'D11'          19.809     
    'D12'          4.5406     
    'D13'           3.308     
    'A13'          192.46     

energy_total = varfun(@sum,energy_table(:,2))

energy_total=1×1 table
    sum_energy_by_scales
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    ____________________

           1827.3       

Confirm the MODWT is energy-preserving by computing the energy of the signal and
comparing it with the sum of the energies over all scales.

energy_ecg = sum(ecgsig.^2);
max(abs(energy_total.sum_energy_by_scales-energy_ecg))

ans = 4.0870e-09

Take the MODWTMRA of the signal.

mraecg = modwtmra(wtecg,wv);

MODWTMRA returns the projections of the function f (x) onto the various wavelet
subspaces and final scaling space. That is, MODWTMRA returns

∑
k = 0

N − 1
ck 2− J0/2ϕ(2− J0 x− k)and the J0-many {f j(x)}evaluated at N-many time points. Each

row in mraecg is a projection of f (x) onto a different subspace. This means the original
signal can be recovered by adding all the projections. This is not true in the case of the
MODWT. Adding the coefficients in wtecg will not recover the original signal.

Choose a time point, add the projections of f (x) evaluated at that time point and compare
with the original signal.

time_point = 1000;
abs(sum(mraecg(:,time_point))-ecgsig(time_point))

ans = 3.0970e-13

Confirm that, unlike MODWT, MODWTMRA is not an energy-preserving transform.

energy_ecg = sum(ecgsig.^2);
energy_mra_scales = sum(mraecg.^2,2);
energy_mra = sum(energy_mra_scales);
max(abs(energy_mra-energy_ecg))

ans = 534.7949
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The MODWTMRA is a zero-phase filtering of the signal. Features will be time-aligned.
Demonstrate this by plotting the original signal and one of its projections. To better
illustrate the alignment, zoom in.

figure
plot(ecgsig)
hold on
plot(mraecg(4,:),'-')
grid on
xlim([4000 5000])
legend('Signal','Projection','Location','northwest')

Make a similar plot using the MODWT coefficients at the same scale. Note that features
will not be time-aligned. The MODWT is not a zero-phase filtering of the input.
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figure
plot(ecgsig)
hold on
plot(wtecg(4,:),'-')
grid on
xlim([4000 5000])
legend('Signal','Coefficients','Location','northwest')

References

Goldberger A. L., L. A. N. Amaral, L. Glass, J. M. Hausdorff, P. Ch. Ivanov, R. G. Mark, J. E.
Mietus, G. B. Moody, C-K Peng, H. E. Stanley. "PhysioBank, PhysioToolkit, and PhysioNet:
Components of a New Research Resource for Complex Physiologic Signals." Circulation

1 Getting Started with Wavelet Toolbox Software

1-36



101. Vol.23, e215-e220, 2000. http://circ.ahajournals.org/cgi/content/full/
101/23/e215

Moody, G. B. "Evaluating ECG Analyzers". http://www.physionet.org/
physiotools/wfdb/doc/wag-src/eval0.tex

Moody G. B., R. G. Mark. "The impact of the MIT-BIH Arrhythmia Database." IEEE Eng in
Med and Biol. Vol. 20, Number 3, 2001), pp. 45-50 .

See Also
modwt | modwtmra

 See Also

1-37



Image Reconstruction with Biorthogonal Wavelets
This example shows how applying the order biorthogonal wavelet filters can affect image
reconstruction.

Generate the analysis and synthesis filters for the bior3.5 wavelet. Load in and display
an image.

[LoD,HiD,LoR,HiR] = wfilters('bior3.5');
load woman
imagesc(X)
colormap gray
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The analysis filters, LoD and HiD, have 5 vanishing moments. The synthesis filters, LoR
and HiR, have 3 vanishing moments. Do a five-level wavelet decomposition of the image
using the analysis filters.

[c1,s1] = wavedec2(X,5,LoD,HiD);

Find the threshold that keeps only those wavelet coefficients with magnitudes in the top
10 percent. Use the threshold to set the bottom 90 percent of coefficients to 0.

frac = 0.1;
c1sort = sort(abs(c1),'desc');
num = numel(c1);
thr = c1sort(floor(num*frac));
c1new = c1.*(abs(c1)>=thr);

Reconstruct the image using the synthesis filters and the thresholded coefficients. Display
the reconstruction.

X1 = waverec2(c1new,s1,LoR,HiR);
figure
imagesc(X1)
colormap gray
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Do a five-level wavelet decomposition of the image using the synthesis filters.

[c2,s2] = wavedec2(X,5,LoR,HiR);

Find the threshold that keeps only those wavelet coefficients with magnitudes in the top
10 percent. Use the threshold to set the bottom 90 percent of coefficients to 0

frac = 0.1;
c2sort = sort(abs(c2),'desc');
num = numel(c2sort);
thr = c2sort(floor(num*frac));
c2new = c2.*(abs(c2)>=thr);
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Reconstruct the image using the synthesis filters and the thresholded coefficients. Display
the reconstruction. Decomposing with a filter that has 3 vanishing moments and
reconstructing with a filter that has 5 vanishing moments results in poor reconstruction.

X2 = waverec2(c2new,s2,LoD,HiD);
figure
imagesc(X2)
colormap gray

See Also
biorfilt | biorwavf | wavedec2 | waverec2 | wfilters
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Wavelets and Vanishing Moments
This example shows how the number of vanishing moments can affect wavelet
coefficients.

Create a signal defined over the interval 0 ≤ x ≤ 2. The signal is constant over the
interval 0 ≤ x < 1 and quadratic over the interval 1 ≤ x ≤ 2. Plot the signal.

n = 1024;
x = linspace(0,2,n);
sig = zeros(1,n);
ind0 = (0<=x)&(x<1);
ind1 = (1<=x)&(x<=2);
sig(ind0) = 1;
sig(ind1) = x(ind1).^2;
plot(sig)
grid on
title('Signal')

1 Getting Started with Wavelet Toolbox Software

1-42



Compute a single-level wavelet decomposition of the signal using the db1 wavelet. This
wavelet has one vanishing moment. Plot the approximation coefficients and wavelet
coefficients.

[a1,d1] = dwt(sig,'db1');
figure
subplot(2,1,1)
plot(a1)
grid on
title('Approximation Coefficients - db1')
subplot(2,1,2)
plot(d1)
grid on
title('Wavelet Coefficients - db1')
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The wavelet coefficients corresponding with the constant portion of the signal are
approximately 0. The magnitude of the wavelet coefficients corresponding with the
quadratic portion of the signal are increasing. Because the db1 wavelet has one vanishing
moment, the wavelet is not orthogonal to the quadratic portion of the signal.

Compute a single-level wavelet decomposition of the signal using the db3 wavelet. This
wavelet has three vanishing moments. Plot the approximation coefficients and wavelet
coefficients.

[a2,d2] = dwt(sig,'db3');
figure
subplot(2,1,1)
plot(a2)
grid on
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title('Approximation Coefficients - db3')
subplot(2,1,2)
plot(d2)
grid on
title('Wavelet Coefficients - db3')

The wavelet coefficients corresponding with the constant portion of the signal are
approximately 0. The spike in the middle corresponds to where the constant and
quadratic pieces of the signal meet. The spike at the end is a boundary effect. The
magnitude of the wavelet coefficients corresponding with the quadratic portion of the
signal are approximately 0. Because the db3 wavelet has three vanishing moments, the
wavelet is orthogonal to the quadratic part of the signal.
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See Also
waveinfo
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Continuous and Discrete Wavelet Transforms
This topic describes the major differences between the continuous wavelet transform
(CWT) and the discrete wavelet transform (DWT) – both decimated and nondecimated
versions. cwt is a discretized version of the CWT so that it can be implemented in a
computational environment. This discussion focuses on the 1-D case, but is applicable to
higher dimensions.

The cwt wavelet transform compares a signal with shifted and scaled (stretched or
shrunk) copies of a basic wavelet. If ψ(t) is a wavelet centered at t=0 with time support
on [-T/2, T/2], then 1s ψ( t − u

s ) is centered at t = u with time support [-sT/2+u, sT/2+u]. The
cwt function uses L1 normalization so that all frequency amplitudes are normalized to the
same value. If 0<s<1, the wavelet is contracted (shrunk) and if s>1, the wavelet is
stretched. The mathematical term for this is dilation. See “Continuous Wavelet Transform
and Scale-Based Analysis” on page 1-91 for examples of how this operation extracts
features in the signal by matching it against dilated and translated wavelets.

The major difference between the CWT and discrete wavelet transforms, such as the dwt
and modwt, is how the scale parameter is discretized. The CWT discretizes scale more
finely than the discrete wavelet transform. In the CWT, you typically fix some base which
is a fractional power of two, for example, 21/v where v is an integer greater than 1. The v
parameter is often referred to as the number of “voices per octave”. Different scales are
obtained by raising this base scale to positive integer powers, for example
2 j/v j = 1, 2, 3, …. The translation parameter in the CWT is discretized to integer values,
denoted here by m. The resulting discretized wavelets for the CWT are

1
2 j/νψ(n−m

2 j/v ) .

The reason v is referred to as the number of voices per octave is because increasing the
scale by an octave (a doubling) requires v intermediate scales. Take for example 2v/v = 2
and then increase the numerator in the exponent until you reach 4, the next octave. You
move from 2v/v = 2 to 22v/v = 4. There are v intermediate steps. Common values for v are
10,12,14,16, and 32. The larger the value of v, the finer the discretization of the scale
parameter, s. However, this also increases the amount of computation required because
the CWT must be computed for every scale. The difference between scales on a log2 scale
is 1/v. See “Time-Frequency Analysis with the Continuous Wavelet Transform” and “Time-
Frequency Analysis of Modulated Signals” for examples of scale vectors with the CWT.
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In the discrete wavelet transform, the scale parameter is always discretized to integer
powers of 2, 2j, j=1,2,3,..., so that the number of voices per octave is always 1. The
difference between scales on a log2 scale is always 1 for discrete wavelet transforms.
Note that this is a much coarser sampling of the scale parameter, s, than is the case with
the CWT. Further, in the decimated (downsampled) discrete wavelet transform (DWT), the
translation parameter is always proportional to the scale. This means that at scale, 2j, you
always translate by 2jm where m is a nonnegative integer. In nondecimated discrete
wavelet transforms like modwt and swt, the scale parameter is restricted to powers of
two, but the translation parameter is an integer like in the CWT. The discretized wavelet
for the DWT takes the following form

1
2 jψ( 1

2 j(n− 2 jm)) .

The discretized wavelet for the nondecimated discrete wavelet transform, such as the
MODWT, is

1
2 jψ(n−m

2 j ) .

To summarize:

• The CWT and the discrete wavelet transforms differ in how they discretize the scale
parameter. The CWT typically uses exponential scales with a base smaller than 2, for
example 21/12 . The discrete wavelet transform always uses exponential scales with the
base equal to 2. The scales in the discrete wavelet transform are powers of 2. Keep in
mind that the physical interpretation of scales for both the CWT and discrete wavelet
transforms requires the inclusion of the signal’s sampling interval if it is not equal to
one. For example, assume you are using the CWT and you set your base to s0 = 21/12.
To attach physical significance to that scale, you must multiply by the sampling
interval Δt, so a scale vector covering approximately four octaves with the sampling
interval taken into account is s0

jΔt j = 1, 2,⋯48. Note that the sampling interval
multiplies the scales, it is not in the exponent. For discrete wavelet transforms the
base scale is always 2.

• The decimated and nondecimated discrete wavelet transforms differ in how they
discretize the translation parameter. The decimated discrete wavelet transform (DWT),
always translates by an integer multiple of the scale, 2jm . The nondecimated discrete
wavelet transform translates by integer shifts.
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These differences in how scale and translation are discretized result in advantages and
disadvantages for the two classes of wavelet transforms. These differences also determine
use cases where one wavelet transform is likely to provide superior results. Some
important consequences of the discretization of the scale and translation parameter are:

• The DWT provides a sparse representation for many natural signals. In other words,
the important features of many natural signals are captured by a subset of DWT
coefficients that is typically much smaller than the original signal. This “compresses”
the signal. With the DWT, you always end up with the same number of coefficients as
the original signal, but many of the coefficients may be close to zero in value. As a
result, you can often throw away those coefficients and still maintain a high-quality
signal approximation. With the CWT, you go from N samples for an N-length signal to a
M-by-N matrix of coefficients with M equal to the number of scales. The CWT is a
highly redundant transform. There is significant overlap between wavelets at each
scale and between scales. The computational resources required to compute the CWT
and store the coefficients is much larger than the DWT. The nondecimated discrete
wavelet transform is also redundant but the redundancy factor is usually significantly
less than the CWT, because the scale parameter is not discretized so finely. For the
nondecimated discrete wavelet transform, you go from N samples to an L+1-by-N
matrix of coefficients where L is the level of the transform.

• The strict discretization of scale and translation in the DWT ensures that the DWT is
an orthonormal transform (when using an orthogonal wavelet). There are many
benefits of orthonormal transforms in signal analysis. Many signal models consist of
some deterministic signal plus white Gaussian noise. An orthonormal transform takes
this kind of signal and outputs the transform applied to the signal plus white noise. In
other words, an orthonormal transform takes in white Gaussian noise and outputs
white Gaussian noise. The noise is uncorrelated at the input and output. This is
important in many statistical signal processing settings. In the case of the DWT, the
signal of interest is typically captured by a few large-magnitude DWT coefficients,
while the noise results in many small DWT coefficients that you can throw away. If you
have studied linear algebra, you have no doubt learned many advantages to using
orthonormal bases in the analysis and representation of vectors. The wavelets in the
DWT are like orthonormal vectors. Neither the CWT nor the nondecimated discrete
wavelet transform are orthonormal transforms. The wavelets in the CWT and
nondecimated discrete wavelet transform are technically called frames, they are
linearly-dependent sets.

• The DWT is not shift-invariant. Because the DWT downsamples, a shift in the input
signal does not manifest itself as a simple equivalent shift in the DWT coefficients at
all levels. A simple shift in a signal can cause a significant realignment of signal
energy in the DWT coefficients by scale. The CWT and nondecimated discrete wavelet
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transform are shift-invariant. There are some modifications of the DWT such as the
dual-tree complex discrete wavelet transform that mitigate the lack of shift invariance
in the DWT, see “Critically Sampled and Oversampled Wavelet Filter Banks” for some
conceptual material on this topic and “Dual-Tree Wavelet Transforms” for an example.

• The discrete wavelet transforms are equivalent to discrete filter banks. Specifically,
they are tree-structured discrete filter banks where the signal is first filtered by a
lowpass and a highpass filter to yield lowpass and highpass subbands. Subsequently,
the lowpass subband is iteratively filtered by the same scheme to yield narrower
octave-band lowpass and highpass subbands. In the DWT, the filter outputs are
downsampled at each successive stage. In the nondecimated discrete wavelet
transform, the outputs are not downsampled. The filters that define the discrete
wavelet transforms typically only have a small number of coefficients so the transform
can be implemented very efficiently. For both the DWT and nondecimated discrete
wavelet transform, you do not actually require an expression for the wavelet. The
filters are sufficient. This is not the case with the CWT. The most common
implementation of the CWT requires you have the wavelet explicitly defined. Even
though the nondecimated discrete wavelet transform does not downsample the signal,
the filter bank implementation still allows for good computational performance, but
not as good as the DWT.

• The discrete wavelet transforms provide perfect reconstruction of the signal upon
inversion. This means that you can take the discrete wavelet transform of a signal and
then use the coefficients to synthesize an exact reproduction of the signal to within
numerical precision. You can implement an inverse CWT, but it is often the case that
the reconstruction is not perfect. Reconstructing a signal from the CWT coefficients is
a much less stable numerical operation.

• The finer sampling of scales in the CWT typically results in a higher-fidelity signal
analysis. You can localize transients in your signal, or characterize oscillatory behavior
better with the CWT than with the discrete wavelet transforms.

For additional information on wavelet transforms and applications, see

• “From Fourier Analysis to Wavelet Analysis” on page 1-84
• “Continuous Wavelet Transform and Scale-Based Analysis” on page 1-91
• “Continuous Wavelet Transform as a Bandpass Filter” on page 1-98
• “Inverse Continuous Wavelet Transform” on page 1-102
• “Interpreting Continuous Wavelet Coefficients” on page 1-104
• “Critically-Sampled Discrete Wavelet Transform” on page 1-120
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• “Wavelet Packets: Decomposing the Details”
• “Compare Time-Frequency Content in Signals with Wavelet Coherence”

Guidelines for Continuous Wavelet Transform vs. Discrete
Wavelet Transform
Based on the previous section, here are some basic guidelines for deciding on whether to
use a discrete or continuous wavelet transform.

• If your application is to obtain the sparsest possible signal representation for
compression, denoising, or signal transmission, use the DWT with wavedec.

• If your application requires an orthonormal transform, use the DWT with one of the
orthogonal wavelet filters. The orthogonal families in the Wavelet Toolbox are
designated as type 1 wavelets in the wavelet manager, wavemngr. Valid built-in
orthogonal wavelet families are 'haar', 'dbN', 'fkN', 'coifN', or 'symN' where
N is the number of vanishing moments for all families except 'fk'. For 'fk', N is the
number of filter coefficients. See waveinfo for more detail.

• If your application requires a shift-invariant transform but you still need perfect
reconstruction and some measure of computational efficiency, try a nondecimated
discrete wavelet transform like modwt or a dual-tree transform like dddtree.

• If your primary goal is a detailed time-frequency (scale) analysis or precise localization
of signal transients, use cwt. For an example of time-frequency analysis with the CWT,
see “Time-Frequency Analysis with the Continuous Wavelet Transform”.

• For denoising a signal by thresholding wavelet coefficients, use the wdenoise
function or the Wavelet Signal Denoiser app. wdenoise and Wavelet Signal
Denoiser provide default settings that can be applied to your data, as well as a simple
interface to a variety of denoising methods. With the app, you can visualize and
denoise signals, and compare results. For examples of denoising a signal, see “Denoise
A Signal Using Default Values” and “Denoise a Signal with the Wavelet Signal
Denoiser”. For denoising images, use wdencmp. For an example, see “Denoising
Signals and Images”.

• If your application requires that you have a solid understanding of the statistical
properties of the wavelet coefficients, use a discrete wavelet transform. There is active
work in understanding the statistical properties of the CWT, but currently there are
many more distributional results for the discrete wavelet transforms. The success of
the DWT in denoising is largely due to our understanding of its statistical properties.
For an example of estimation and hypothesis testing using a nondecimated discrete
wavelet transform see “Wavelet Analysis of Financial Data”.
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See Also

More About
• Understanding Wavelets, Part 1: What Are Wavelets
• Understanding Wavelets, Part 2: Types of Wavelet Transforms
• Understanding Wavelets, Part 3: An Example Application of the Discrete Wavelet

Transform
• Understanding Wavelets, Part 4: An Example Application of the Continuous Wavelet

Transform
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Nonstationary Gabor Frames and the Constant-Q
Transform

In this section...
“Decomposing the Time-Frequency Plane” on page 1-53
“Constant-Q Transform” on page 1-55
“References” on page 1-57

Nonstationary Gabor frames enable you to implement time-adaptive or frequency-
adaptive analysis of signals. The functions cqt and icqt use nonstationary Gabor frames
to obtain a constant-Q (frequency-adaptive) transform (CQT) of a signal. A notable
strength of nonstationary Gabor frames is that they enable the construction of stable
inverses, yielding perfect reconstruction.

The theory of nonstationary Gabor frames and efficient algorithms for their
implementation are due to Dörfler, Holighaus, Grill, and Velasco [1][2]. The algorithms in
[1] and [2] implement a phase-locked version of the CQT that does not preserve the same
phases that would be obtained by naïve convolution. In [3], Schörkhuber, Klapuri,
Holighaus, and Dörfler develop efficient algorithms for the CQT and inverse CQT that do
mimic the coefficients obtained by naïve convolution. The Large Time-Frequency Analysis
Toolbox [4] provides an extensive set of algorithms for nonstationary Gabor analysis and
synthesis.

In standard Gabor analysis, a window of fixed size tiles the time-frequency plane. A
nonstationary Gabor frame is a collection of windowing functions of various sizes that are
used to tile the time-frequency plane. Wavelet analysis tiles the time-frequency plane in a
similar manner. You have the flexibility to change the sampling density in time or
frequency. Nonstationary Gabor frames are useful in areas such as audio signal
processing, where fixed-sized time-frequency windows are not optimal. Unlike the short-
time Fourier transform, the windows used in the constant-Q transform have adaptable
bandwidth and sampling density. In frequency space, the windows are centered at
logarithmically spaced center frequencies.

Decomposing the Time-Frequency Plane
The Fourier transform of f(t) is the correlation of f(t) with ej ω t:

F(ω) =∫−∞
∞

f (t)e− jωtdt .
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Since ej ω t does not have compact support, the Fourier transform is not an ideal choice for
studying nonstationary signals. If the frequency content of a signal changes over time, the
Fourier transform does not capture what those changes are or when those changes occur.
The partition of the time-frequency plane shown here represents this Fourier transform
behavior.

To perform a time-frequency analysis of a nonstationary signal, start with a real-valued
even windowing function, g(t), which is effectively nonzero over only a finite interval and
has norm equal to one. In addition, the Fourier transform of g(t) is centered at zero and is
lowpass. Next, window f(t) with translates of g(t). Then take the Fourier transform of the
result

SF(u, ζ) =∫ f (t)g(t − u)e− jζ tdt .

Correlating f(t) with the Gabor atoms, g(t − u)e jζt, is standard Gabor analysis. By varying
u, you consider only values of f(t) near time u. The support of g(t) determines the size of
the neighborhood near time u. The Fourier transform of gu, ζ(t) = g(t − u)eζt is the
translation by ζ of the Fourier transform of g(t) and is given by

g u, ζ(ω) = e−(ω− ζ)g (ω− ζ) .

The energy concentration of g u, ζ(ω) has variance σω and is centered at ζ. If the window,
gu, ζ(t) = g(t − u)eζt, shifts on a regular grid, the Fourier transform of the product of the
shifted window and f(t) is the short-time Fourier transform (STFT). The STFT tiling of the
time-frequency plane can be represented as a grid of boxes, each centered at (u, ζ):
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The set of functions gu, ζ  is known as a Gabor frame. The elements of this set are called
Gabor atoms. A frame is a set of functions, {hk(t)}, that satisfy the following condition:
there exist constants A > 0, B > 0 such that for any function f(t),

A f 2 ≤ Σk < f , hk > 2 ≤ B f 2 .

The energy concentration of g(t), in time, has variance σt. The energy concentration of
g (ω), in frequency, has variance σω. The energy concentration determines how well the
window localizes the signal in time and frequency. By the time-frequency uncertainty
principle, there is a limit as to how well you can simultaneously localize in both time and
frequency domains, as indicated by

σtσω ≥
1
2 .

Narrowing the window in one domain results in poorer localization in the other domain.
Gabor showed that the area of the window is minimal when g(t) is Gaussian.

Constant-Q Transform
In the CQT, the bandwidth and sampling density in frequency are varied. The windows are
constructed and applied directly in the frequency domain. Different windows have
different center frequencies and bandwidths, but the ratio of the center frequency to
bandwidth remains constant. Maintaining a constant ratio implies:

• Resolution in time improves at higher frequencies.
• Resolution in frequency improves at lower frequencies.
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The time shifts for each window depend on the bandwidth, due to the uncertainty
principle.

The CQT depends on:

• The window functions gk are real-valued, even functions. In the frequency domain, the
Fourier transform of gk is defined on the interval, [-Fs/2, Fs/2].

• The sampling rate, ζs.
• The number of bins per octave, b.
• The minimum and maximum frequencies, ζmin and ζmax.

Choose a minimum frequency ζmin and number of bins per octave b. Next, form a
sequence of geometrically spaced frequencies,

ζk = ζmin × 2k/b

for k = 0,...,K where K is an integer such that ζK is the largest frequency strictly less than
the Nyquist frequency ζs/2. The bandwidth at the kth frequency is set to Ωk = ζk+1-ζk-1.
Given this sampling, the ratio of the kth center frequency to the window bandwidth is
independent of k:

Q = ζk/Δk = (21/b-2-1/b)-1.
To ensure perfect reconstruction, the DC component and Nyquist frequency are
prepended and appended, respectively, to the sequence.

W(ω) forms the window functions gk. W(ω) is a real-valued, even continuous function that
is centered at 0, positive in the interval [-½,½], and 0 elsewhere. W(ω) is translated to
each center frequency ζk then scaled. Evaluating a scaled and translated version of W(ω)
yields the filter coefficients gk[m], given by

gk[m] = W((m ζs/L - ζk)/Ωk)
for m = 0, …, L-1, where L is the signal length. By default, cqt uses the 'hann' window.

By the uncertainty principle, the size of the bandwidth constrains the value of the time
shifts. To satisfy the frame inequality, the shift akof gk must satisfy

ak ≤ ζk/Ωk.

As mentioned previously, the window is applied in the frequency domain. The filters, gk,
centered at ζk, are formed and applied to the Fourier transform of the signal. Taking the
inverse transform obtains the constant-Q coefficients.

1 Getting Started with Wavelet Toolbox Software

1-56



References

[1] Holighaus, N., M. Dörfler, G.A. Velasco, and T. Grill. "A framework for invertible real-
time constant-Q transforms." IEEE Transactions on Audio, Speech, and Language
Processing. Vol. 21, No. 4, 2013, pp. 775–785.

[2] Velasco, G. A., N. Holighaus, M. Dörfler, and T. Grill. "Constructing an invertible
constant-Q transform with nonstationary Gabor frames." In Proceedings of the
14th International Conference on Digital Audio Effects (DAFx-11). Paris, France:
2011.

[3] Schörkhuber, C., A. Klapuri, N. Holighaus, and M. Dörfler. "A Matlab Toolbox for
Efficient Perfect Reconstruction Time-Frequency Transforms with Log-Frequency
Resolution." Submitted to the AES 53rd International Conference on Semantic
Audio. London, UK: 2014.

[4] Průša, Z., P. L. Søndergaard, N. Holighaus, C. Wiesmeyr, and P. Balazs. The Large
Time-Frequency Analysis Toolbox 2.0. Sound, Music, and Motion, Lecture Notes
in Computer Science 2014, pp 419-442. https://github.com/ltfat

See Also
cqt | icqt

More About
• “Short-Time Fourier Transform” on page 1-87

 See Also

1-57

https://github.com/ltfat


Wavelet Scattering
A wavelet scattering framework enables you to derive, with minimal configuration, low-
variance features from real-valued time series and image data for use in machine learning
and deep learning applications. The features are insensitive to translations of the input on
an invariance scale that you define and are continuous with respect to deformations. In
the 2-D case, features are also insensitive to rotations. The scattering framework uses
predefined wavelet and scaling filters.

Mallat, with Bruna and Andén, pioneered the creation of a mathematical framework for
studying convolutional neural architectures [2][3][4][5]. Andén and Lostanlen developed
efficient algorithms for wavelet scattering of 1-D signals [4] [6]. Oyallon developed
efficient algorithms for 2-D scattering [7]. Andén, Lostanlen, and Oyallon are major
contributors to the ScatNet [10] and Kymatio [11] software for computing scattering
transforms.

Mallat and others characterized three properties that deep learning architectures possess
for extracting useful features from data:

• Multiscale contractions
• Linearization of hierarchical symmetries
• Sparse representations

The wavelet scattering framework exhibits all these properties. Wavelet transforms
linearize small deformations such as dilations by separating the variations across
different scales. For many natural signals, the wavelet transform also provides a sparse
representation. By combining wavelet transforms with other features of the scattering
framework described below, the scattering transform produces data representations that
minimize differences within a class while preserving discriminability across classes. An
important distinction between the scattering transform and deep learning frameworks is
that the filters are defined a priori as opposed to being learned. Because the scattering
transform is not required to learn the filter responses, you can often use scattering
successfully in situations where there is a shortage of training data.

Wavelet Scattering Transform
A wavelet scattering transform processes data in stages. The output of one stage becomes
input for the next stage. Each stage consists of three operations.
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The zeroth-order scattering coefficients are computed by simple averaging of the input.
Here is a tree view of the algorithm:

The ψ j, k  are wavelets, ϕJ is the scaling function, and f  is the input data. In the case of
image data, for each ψ j, k, there are a number of user-specified rotations of the wavelet. A
sequence of edges from the root to a node is referred to as a path. The tree nodes are the
scalogram coefficients. The scattering coefficients are the scalogram coefficients
convolved with the scaling function ϕJ. The set of scattering coefficients are the low-
variance features derived from the data. Convolution with the scaling function is lowpass
filtering and information is lost. However, the information is recovered when computing
the coefficients in the next stage.

To extract features from the data, first use waveletScattering (for time series) or
waveletScattering2 (for image data) to create and configure the framework.
Parameters you set include the size of invariance scale, the number of filter banks, and
the number of wavelets per octave in each filter bank. In waveletScattering2 you can
also set the number of rotations per wavelet. To derive features from time series, use the
waveletScattering object functions scatteringTransform or featureMatrix. To
derive features from image data, use the waveletScattering2 object functions
scatteringTransform or featureMatrix.
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The scattering transform generates features in an iterative fashion. First, you convolve
the data with the scaling function, f ∗ ϕJ to obtain S[0], the zeroth-order scattering
coefficients. Next, proceed as follows:

1 Take the wavelet transform of the input data with each wavelet filter in the first filter
bank.

2 Take the modulus of each of the filtered outputs. The nodes are the scalogram, U[1].
3 Average each of the moduli with the scaling filter. The results are the first-order

scattering coefficients, S[1].

Repeat the process at every node.

The scatteringTransform function returns the scattering and scalogram coefficients.
The featureMatrix function returns the scattering features. Both outputs can be made
easily consumable by learning algorithms, as demonstrated in “Wavelet Time Scattering
for ECG Signal Classification” or “Texture Classification with Wavelet Image Scattering”.

Invariance Scale
The scaling filter plays a crucial role in the wavelet scattering framework. When you
create a wavelet scattering framework, you specify the invariance scale. The framework is
invariant to translations up to the invariance scale. The support of the scaling function
determines the size of the invariant in time or space.

Time Invariance

For time series data, the invariance scale is a duration. The time support of the scaling
function does not exceed the size of the invariant. This plot shows the support of the
scaling function in a framework with an invariance scale of two seconds and a sampling
frequency of 100 Hz. Also shown are the real and imaginary parts of the coarsest-scale
wavelet from the first filter bank. Observe the time supports of the functions do not
exceed two seconds.
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The invariance scale also affects the spacings of the center frequencies of the wavelets in
the filter banks. In a filter bank created by cwtfilterbank, the bandpass center
frequencies are logarithmically spaced and the bandwidths of the wavelets decrease with
center frequency.

In a scattering framework, however, the time support of a wavelet cannot exceed the
invariance scale. This property is illustrated in the coarsest-scale wavelet plot.
Frequencies lower than the invariant scale are linearly spaced with scale held constant so
that the size of the invariant is not exceeded. The next plot shows the center frequencies
of the wavelets in the first filter bank in the scattering framework. The center frequencies
are plotted on linear and logarithmic scales. Note the logarithmic spacing of the higher
center frequencies and the linear spacing of the lower center frequencies.
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Image Invariance

For image data, the invariance scale specifies the N-by-N spatial support, in pixels, of the
scaling filter. For example, by default the waveletScattering2 function creates a
wavelet image scattering framework for image size 128-by-128 and an invariance scale of
64. The following surface plot shows the scaling function used in the framework. The
intersecting red lines form a 64-by-64 square.
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Quality Factors and Filter Banks
When creating a wavelet scattering framework, in addition to the invariance scale, you
also set the quality factors for the scattering filter banks. The quality factor for each filter
bank is the number of wavelet filters per octave. The wavelet transform discretizes the
scales using the specified number of wavelet filters.

This plot shows the wavelet filters in the framework created by waveletScattering.
The invariance scale is one second and sampling frequency is 200 Hz. The first filter bank
has the default quality value of 8, and the second filter bank has the default quality factor
of 1.
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For image data, large quality factors are not necessary. Large values also result in
significant computational overhead. By default waveletScattering2 creates a
framework with two filter banks each with a quality factor of 1. This plot shows the
wavelet center frequencies for a wavelet image scattering framework with two filter
banks. The first filter bank has a quality factor of 2, and the second filter bank has a
quality factor of 1. The number of rotations per filter bank is 6.
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In Practice
With the proper choice of wavelets, the scattering transform is nonexpansive. Energy
dissipates as you iterate through the framework. As the order m increases, the energy of
the mth-order scalogram coefficients and scattering coefficients rapidly converges to 0 [3].
Energy dissipation has a practical benefit. You can limit the number of wavelet filter
banks in the framework with a minimal loss of signal energy. Published results show that
the energy of the third-order scattering coefficients can fall below one percent. For most
applications, a framework with two wavelet filter banks is sufficient.

Consider the tree view of the wavelet time scattering framework. Suppose that there are
M wavelets in the first filter bank, and N wavelets in the second filter bank. The number
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of wavelet filters in each filter bank do not have to be large before a naive implementation
becomes unfeasible. Efficient implementations take advantage of the lowpass nature of
the modulus function and critically downsample the scattering and scalogram
coefficients. These strategies were pioneered by Anden, Lostanlen, and Oyallon [4] [6] [7]
in order to make scattering transforms computationally practical while maintaining their
ability to produce low-variance data representations for learning. By default,
waveletScattering and waveletScattering2 create frameworks that critically
downsample the coefficients.
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See Also
waveletScattering | waveletScattering2

Related Examples
• “Wavelet Time Scattering for ECG Signal Classification”
• “Music Genre Classification Using Wavelet Time Scattering”
• “Wavelet Time Scattering Classification of Phonocardiogram Data”
• “Spoken Digit Recognition with Wavelet Scattering and Deep Learning”
• “Texture Classification with Wavelet Image Scattering”
• “Digit Classification with Wavelet Scattering”

 See Also

1-67



Haar Transforms for Time Series Data and Images
This example shows how to use Haar transforms to analyze time series data and images.
To run all the code in this example, you must have the Signal Processing Toolbox™ and
Image Processing Toolbox™.

First, visualize the Haar wavelet.

[~,psi,x] = wavefun('haar',10);
x = x(2:end-1);
psi = psi(2:end-1);
hl = plot(x(1:512),psi(1:512)); grid on; hold on;
line(x(513:end),psi(513:end));
xlabel('t'); ylabel('\psi(t)','fontsize',14);
title('Haar Wavelet');
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The Haar wavelet is discontinuous. As a result, it is typically not used in denoising or
compression applications where smoothness of the reconstruction wavelet is an important
consideration. However, Haar transforms are useful in a number of applications due to
their superior time (spatial) localization and computational efficiency. The Wavelet
Toolbox™ supports Haar analysis in most of the discrete wavelet analysis tools. This
example features Haar lifting implementations which support integer-to-integer wavelet
transforms for both 1-D and 2-D data and multichannel (multivariate) 1-D data.

Analyze Signal Variability By Scale

Load and plot the clock_571 dataset. This example is essentially a recreation of the
analysis presented in Percival & Walden (2000), pp 13-16.
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load clock_571;
figure;
plot(clock_571)
xlabel('Days')
grid on;
title('Daily Average Fractional Frequency Deviates -- Cesium Clock');

The data are daily average fractional frequency deviates for a particular cesium beam
atomic clock with respect to the U.S. Naval Observatory master clock. If the value of the
time series is 0, that means the cesium clock has neither lost nor gained time with respect
to the master clock over the duration of the day. If the value is negative, the clock has lost
time that day, a positive value means that the clock has gained time. For this data, the
values are all negative. For certain applications, like geodesy, it is important to know
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whether there are certain time scales where the clock's deviation from the master clock is
at its lowest value. In other words, are there certain scales where the clock agrees most
closely with the master clock? The Haar transform is useful here because it possesses two
important properties: It decorrelates data by scale and it partitions signal energy among
scale.

To illustrate the decorrelating property, obtain the Haar transform down to level 6. Plot
the autocorrelation sequence of the original data along with the autocorrelation of the
wavelet coefficients by scale for scales of 2,4,8,16, and 32 days. Dashed lines on the plots
delineate 95% confidence intervals for white noise inputs. Values exceeding those lines
are indicative of significant autocorrelation in the data.

[s,w] = haart(clock_571,6);
helperAutoCorr(clock_571,w);
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The top plot shows the autocorrelation sequence for the original data. Subsequent plots
show the autocorrelation sequences for wavelet coefficients at increasingly coarser
scales. It is clear that the autocorrelation sequence of the original data exhibits
correlation at all lags while the Haar transform coefficients are decorrelated. Next,
demonstrate energy conservation.

sigenergy = norm(clock_571,2)^2
energyByScale = cellfun(@(x)norm(x,2)^2,w);
haarenergy = norm(s,2)^2+sum(energyByScale)

sigenergy =

   2.7964e+05

haarenergy =

   2.7964e+05

The total signal energy is preserved by the Haar transform. Because of these properties,
you can make meaningful inferences based on the proportion of signal energy captured
by the wavelet coefficients at each scale.

scales = 2.^(1:6);
figure;
plot(scales,energyByScale,'-o')
xlabel('Scale (days)');
set(gca,'xscale','log')
set(gca,'xtick',2.^(1:6));
ylabel('Proportion of Signal Energy');
grid on;
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You see that the energy is at a minimum for scales of 16 and 32 days. For the Haar
wavelet (and all Daubechies wavelets), the wavelet coefficients at a given scale represent
differences between weighted averages of the data over a duration 1/2 the length of the
scale. This plot indicates scales over which the cesium clock is in best agreement with the
master clock. This means that considering data over approximately two week or even one
month periods is more accurate than data on smaller or longer scales. As previously
mentioned, this has important implications for geodesy where extremely precise time
measurements are critical.

Although the Haar wavelet is discontinuous, it is still effective at representing various
kinds of time series. Examples include count data and data where values of a time series
are tied to some specific state, which affects the level of the time series. As an example,
consider the relationship between heart rate and sleep state.
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Create Signal Approximations

The data consist of two time series. One time series is the heart rate of a 66-day old infant
sampled every 16 seconds for just over 9 hours. The heart rate time series is integer-
valued. The other time series is the expertly scored sleep state of the same infant over the
same period with the same sampling rate. The sleep state data was scored based on the
infant's EEG and EOG (eye movement) data, not based on the heart rate. The sleep state
codes are 1=quiet sleep, 2=between quiet and active sleep, 3=active sleep, and
4=awake. Both time series were recorded by Prof. Peter Fleming, Dr Andrew Sawczenko,
and Jeanine Young of the Institute of Child Health, Royal Hospital for Sick Children,
Bristol and kindly provided for use in this example. Plot the heart rate data along with the
sleep states.

load BabyECGData;
figure;
yyaxis left;
plot(times,HR);
ylabel('HR');
xlabel('Hrs');
YLim = [min(HR)-1 max(HR)+1];
yyaxis right;
plot(times,SS);
ylabel('Sleep State');
YLim = [0.5 4.5];
title('Baby ECG and Sleep State');
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An inspection of the data reveals an apparent correlation between sleep state and heart
rate, but the data is extremely noisy. Because the Haar transform provides a staircase
approximation to a signal, it is often useful in situations where a response is dependent
on a predictor variable with a small number of discrete states. Here the discrete states
are the four sleep stages. Obtain the Haar approximation of the heart rate data using a
level 5 approximation. Because the heart rate data is integer-valued, use the 'integer'
flag to ensure that integer-valued data is returned. Plot the result.

[S,W] = haart(HR,'integer');
HaarHR = ihaart(S,W,5,'integer');
figure;
hL = plotyy(times,HaarHR,times,SS);
Ax1 = hL(1);

1 Getting Started with Wavelet Toolbox Software

1-76



Ax2 = hL(2);
Ax1.YLim = [min(HaarHR)-1 max(HaarHR)+1]; Ax1.YLabel.String = 'HR';
Ax2.YLim = [0.5 4.5]; Ax2.YLabel.String = 'Sleep State';
xlabel('Hrs');
title('Haar Approximation and Sleep State');

The Haar approximation more clearly shows the relationship between the sleep state and
the heart rate data. You can assess this change by looking at the correlation between the
raw data and the sleep state time series.

corr(SS,HR)

ans =
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    0.5576

Now compare the value of 0.56 with the correlation between the sleep state data and the
Haar approximation

corr(SS,HaarHR)

ans =

    0.6907

The correlation has increased from 0.56 to 0.69. More advanced wavelet analysis and
modeling of this data is presented in Nason, von Sachs, & Kroisandt (2000) and Nason,
Sapatinas, & Sawczenko (2001).

Digital Watermarking of Images

Watermarking is an important data protection tool. It is a passive protection technique
where a marker is covertly inserted in some data in order to verify the authenticity or
integrity of the data. Wavelet techniques in general and the Haar transform in particular
are frequently employed in watermarking images. This example illustrates the use of the
Haar transform in watermarking an image and recovering the watermark. The example
employs a simple watermarking scheme chosen for ease of illustration. In this scheme,
the watermark is inserted in the approximation coefficients at level 3.

Watermark an image of a Mandril with one of a honey badger. Read in the Mandrill
image. Resize it to 2048x2048 and display the result.

coverIM = imread('mandrill.jpg');
coverIM = rgb2gray(coverIM);
coverIM = imresize(im2double(coverIM),[2048 2048]);
imagesc(coverIM); colormap gray;
title('Original Image to Watermark');
axis off; axis square;
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Obtain the Haar transform of the Mandrill image down to level 3.

[LLorig,LHorig,HLorig,HHorig] = haart2(coverIM,3);
imagesc(LLorig), title('Level 3 Haar Approximation');
axis off; axis square;
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Read in watermark image and resize it.

watermark = imread('honeybadger.jpg');
watermark = im2double(rgb2gray(watermark));
watermark = imresize(watermark,[2048 2048]);

Obtain the Haar transform of the watermark image down to level 3.

[LLw,LHw,HLw,HHw] = haart2(watermark,3);
imagesc(LLw); colormap gray;
title('Level 3 Haar Approximation--Watermark');
axis off; axis square;
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Add the honey badger watermark to the Mandril image by attenuating the level-3
approximation coefficients of the watermark and inserting the attenuated coefficients into
the level-3 Mandrill approximation coefficients.

LLwatermarked = LLorig+1e-4*LLw;
markedIM = ihaart2(LLwatermarked,LHorig,HLorig,HHorig);
imagesc(markedIM); title('Watermarked Image')
axis off; axis square;
colormap gray;
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The watermark (honey badger) is not visible in the watermarked image. Because you
know what algorithm was used to insert the watermark, you can recover the watermark
using the Haar transform.

[LLr,LHr,HLr,HHr] = haart2(markedIM,3);
LLmarked = (LLr-LLorig).*1e4;
imagesc(LLmarked); title('Recovered Watermark');
colormap gray;
axis off; axis square;
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From Fourier Analysis to Wavelet Analysis

In this section...
“Inner Products” on page 1-84
“Fourier Transform” on page 1-86
“Short-Time Fourier Transform” on page 1-87

Inner Products
Both the Fourier and wavelet transforms measure similarity between a signal and an
analyzing function. Both transforms use a mathematical tool called an inner product as
this measure of similarity. The two transforms differ in their choice of analyzing function.
This results in the different way the two transforms represent the signal and what kind of
information can be extracted.

As a simple example of the inner product as a measure of similarity, consider the inner
product of vectors in the plane. The following MATLAB example calculates the inner
product of three unit vectors, u, v, w , in the plane:

3/2
1/2

,
1/ 2
1/ 2

,
0
1

u = [sqrt(3)/2 1/2];
v = [1/sqrt(2) 1/sqrt(2)];
w = [0 1];
% Three unit vectors in the plane
quiver([0 0 0],[0 0 0],[u(1) v(1) w(1)],[u(2) v(2) w(2)]);
axis([-1 1 0 1]);
text(-0.020,0.9371,'w');
text(0.6382,0.6623,'v');
text(0.7995,0.4751,'u');
% Compute inner products and print results
fprintf('The inner product of u and v is %1.2f\n', dot(u,v))
fprintf('The inner product of v and w is %1.2f\n', dot(w,v))
fprintf('The inner product of u and w is %1.2f\n', dot(u,w))

Looking at the figure, it is clear that u and v are most similar in their orientation, while u
and w are the most dissimilar.
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The inner products capture this geometric fact. Mathematically, the inner product of two
vectors, u and v is equal to the product of their norms and the cosine of the angle, θ,
between them:

< u, v > = u v cos(θ)

For the special case when both u and v have unit norm, or unit energy, the inner product
is equal to cos(θ) and therefore lies between [-1,1]. In this case, you can interpret the
inner product directly as a correlation coefficient. If either u or v does not have unit norm,
the inner product may exceed 1 in absolute value. However, the inner product still
depends on the cosine of the angle between the two vectors making it interpretable as a
kind of correlation. Note that the absolute value of the inner product is largest when the
angle between them is either 0 or π radians (0 or 180 degrees). This occurs when one
vector is a real-valued scalar multiple of the other.

While inner products in higher-dimensional spaces like those encountered in the Fourier
and wavelet transforms do not exhibit the same ease of geometric interpretation as the
previous example, they measure similarity in the same way. A significant part of the utility
of these transforms is that they essentially summarize the correlation between the signal
and some basic functions with certain physical properties, like frequency, scale, or
position. By summarizing the signal in these constituent parts, we are able to better
understand the mechanisms that produced the signal.
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Fourier Transform
Fourier analysis is used as a starting point to introduce the wavelet transforms, and as a
benchmark to demonstrate cases where wavelet analysis provides a more useful
characterization of signals than Fourier analysis.

Mathematically, the process of Fourier analysis is represented by the Fourier transform:

F(ω) =∫−∞
∞

f (t)e− jωtdt .

which is the integral (sum) over all time of the signal f(t) multiplied by a complex
exponential. Recall that a complex exponential can be broken down into real and
imaginary sinusoidal components. Note that the Fourier transform maps a function of a
single variable into another function of a single variable.

The integral defining the Fourier transform is an inner product. See “Inner Products” on
page 1-84 for an example of how inner products measure of similarity between two
signals. For each value of ω, the integral (or sum) over all values of time produces a
scalar, F(ω), that summarizes how similar the two signals are. These complex-valued
scalars are the Fourier coefficients. Conceptually, multiplying each Fourier coefficient,
F(ω), by a complex exponential (sinusoid) of frequency ω yields the constituent sinusoidal
components of the original signal. Graphically, the process looks like

Because e jωt is complex-valued, F(ω) is, in general, complex-valued. If the signal contains
significant oscillations at an angular frequency of ω0, the absolute value of F(ω0) will be
large. By examining a plot of F(ω)  as a function of angular frequency, it is possible to
determine what frequencies contribute most to the variability of f(t).

To illustrate how the Fourier transform captures similarity between a signal and sinusoids
of different frequencies, the following MATLAB code analyzes a signal consisting of two
sinusoids of 4 and 8 Hertz (Hz) corrupted by additive noise using the discrete Fourier
transform.
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rng(0,'twister');
Fs = 128;
t = linspace(0,1,128);
x = 2*cos(2*pi*4*t)+1.5*sin(2*pi*8*t)+randn(size(t));
xDFT = fft(x);
Freq = 0:64;
subplot(211);
plot(t,x); xlabel('Seconds'); ylabel('Amplitude');
subplot(212);
plot(Freq,abs(xDFT(1:length(xDFT)/2+1)))
set(gca,'xtick',[4:4:64]);
xlabel('Hz'); ylabel('Magnitude');

Viewed as a time signal, it is difficult to determine what significant oscillations are
present in the data. However, looking at the absolute value of the Fourier transform
coefficients as function of frequency, the dominant oscillations at 4 and 8 Hz are easy to
detect.

Short-Time Fourier Transform
The Fourier transform summarizes the similarity between a signal and a sinusoid with a
single complex number. The magnitude of the complex number captures the degree to
which oscillations at a particular frequency contribute to the signal's energy, while the
argument of the complex number captures phase information. Note that the Fourier
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coefficients have no time dependence. The Fourier coefficients are obtained by
integrating, or summing, over all time, so it is clear that this information is lost. Consider
the following two signals:

Both signals consist of a single sine wave with a frequency of 20 Hz. However, in the top
signal, the sine wave lasts the entire 1000 milliseconds. In the bottom plot, the sine wave
starts at 250 and ends at 750 milliseconds. The Fourier transform detects that the two
signals have the same frequency content, but has no way of capturing that the duration of
the 20 Hz oscillation differs between the two signals. Further, the Fourier transform has
no mechanism for marking the beginning and end of the intermittent sine wave.

In an effort to correct this deficiency, Dennis Gabor (1946) adapted the Fourier transform
to analyze only a small section of the signal at a time -- a technique called windowing the
signal. Gabor's adaptation is called the short-time Fourier transform (STFT). The
technique works by choosing a time function, or window, that is essentially nonzero only
on a finite interval. As one example consider the following Gaussian window function:

w(t) = α
πe−αt2

The Gaussian function is centered around t=0 on an interval that depends on the value of
α. Shifting the Gaussian function by τ results in:

w(t − τ) = α
πe−α(t − τ)2,
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which centers the Gaussian window around τ. Multiplying a signal by w(t − τ) selects a
portion of the signal centered at τ. Taking the Fourier transform of these windowed
segments for different values of τ, produces the STFT. Mathematically, this is:

F(ω, τ) =∫ f (t)w(t − τ)e− jωtdt

The STFT maps a function of one variable into a function of two variables, ω and τ. This 2-
D representation of a 1-D signal means that there is redundancy in the STFT. The
following figure demonstrates how the STFT maps a signal into a time-frequency
representation.

The STFT represents a sort of compromise between time- and frequency-based views of a
signal. It provides some information about both when and at what frequencies a signal
event occurs. However, you can only obtain this information with limited precision, and
that precision is determined by the size of the window.

While the STFT compromise between time and frequency information can be useful, the
drawback is that once you choose a particular size for the time window, that window is
the same for all frequencies. Many signals require a more flexible approach -- one where
you can vary the window size to determine more accurately either time or frequency.

Instead of plotting the STFT in three dimensions, the convention is to code F(ω, τ)  as
intensity on some color map. Computing and displaying the STFT of the two 20-Hz sine
waves of different duration shown previously:
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By using the STFT, you can see that the intermittent sine wave begins near 250 msec and
ends around 750 msec. Additionally, you can see that the signal's energy is concentrated
around 20 Hz.
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Continuous Wavelet Transform and Scale-Based Analysis
In this section...
“Definition of the Continuous Wavelet Transform” on page 1-91
“Scale” on page 1-92
“Shifting” on page 1-96
“CWT as a Windowed Transform” on page 1-96

Definition of the Continuous Wavelet Transform
Like the Fourier transform, the continuous wavelet transform (CWT) uses inner products
to measure the similarity between a signal and an analyzing function. In the Fourier
transform, the analyzing functions are complex exponentials, e jωt. The resulting
transform is a function of a single variable, ω. In the short-time Fourier transform, the
analyzing functions are windowed complex exponentials, w(t)e jωt, and the result is a
function of two variables. The STFT coefficients, F(ω, τ), represent the match between the
signal and a sinusoid with angular frequency ω in an interval of a specified length
centered at τ.

In the CWT, the analyzing function is a wavelet, ψ. The CWT compares the signal to
shifted and compressed or stretched versions of a wavelet. Stretching or compressing a
function is collectively referred to as dilation or scaling and corresponds to the physical
notion of scale. By comparing the signal to the wavelet at various scales and positions,
you obtain a function of two variables. The 2-D representation of a 1-D signal is
redundant. If the wavelet is complex-valued, the CWT is a complex-valued function of
scale and position. If the signal is real-valued, the CWT is a real-valued function of scale
and position. For a scale parameter, a>0, and position, b, the CWT is:

C(a, b; f (t), ψ(t)) =∫−∞
∞

f (t)1
aψ* t − b

a dt

where * denotes the complex conjugate. Not only do the values of scale and position
affect the CWT coefficients, the choice of wavelet also affects the values of the
coefficients.

By continuously varying the values of the scale parameter, a, and the position parameter,
b, you obtain the cwt coefficients C(a,b). Note that for convenience, the dependence of
the CWT coefficients on the function and analyzing wavelet has been suppressed.
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Multiplying each coefficient by the appropriately scaled and shifted wavelet yields the
constituent wavelets of the original signal.

There are many different admissible wavelets that can be used in the CWT. While it may
seem confusing that there are so many choices for the analyzing wavelet, it is actually a
strength of wavelet analysis. Depending on what signal features you are trying to detect,
you are free to select a wavelet that facilitates your detection of that feature. For
example, if you are trying to detect abrupt discontinuities in your signal, you may choose
one wavelet. On the other hand, if you are interested in finding oscillations with smooth
onsets and offsets, you are free to choose a wavelet that more closely matches that
behavior.

Scale
Like the concept of frequency, scale is another useful property of signals and images. For
example, you can analyze temperature data for changes on different scales. You can look
at year-to-year or decade-to-decade changes. Of course, you can examine finer (day-to-
day), or coarser scale changes as well. Some processes reveal interesting changes on long
time, or spatial scales that are not evident on small time or spatial scales. The opposite
situation also happens. Some of our perceptual abilities exhibit scale invariance. You
recognize people you know regardless of whether you look at a large portrait, or small
photograph.

To go beyond colloquial descriptions such as “stretching” or “shrinking” we introduce the
scale factor, often denoted by the letter a. The scale factor is an inherently positive
quantity, a>0. For sinusoids, the effect of the scale factor is very easy to see.
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In sin(at), the scale is the inverse of the radian frequency, a.

The scale factor works exactly the same with wavelets. The smaller the scale factor, the
more “compressed” the wavelet. Conversely, the larger the scale, the more stretched the
wavelet. The following figure illustrates this for wavelets at scales 1,2, and 4.
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This general inverse relationship between scale and frequency holds for signals in
general.

Not only is a time-scale representation a different way to view data, it is a very natural
way to view data derived from a great number of natural phenomena.

Scale and Frequency

There is clearly a relationship between scale and frequency. Recall that longer scales
correspond to the most “stretched” wavelets. The more stretched the wavelet, the longer
the portion of the signal with which it is being compared, and therefore the coarser the
signal features measured by the wavelet coefficients.
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To summarize, the general correspondence between scale and frequency is:

• Small scale a ⇒ Compressed wavelet ⇒ Rapidly changing details ⇒ High frequency ω.
• Long scale a ⇒ Stretched wavelet ⇒ Slowly changing, coarse features ⇒ Low

frequency ω.

While there is a general relationship between scale and frequency, no precise relationship
exists. Users familiar with Fourier analysis often want to define a mapping between a
wavelet at a given scale with a specified sampling period to a frequency in hertz. You can
only do this in a general sense. Therefore, it is better to talk about the pseudo-frequency
corresponding to a scale. The Wavelet Toolbox software provides two functions centfrq
and scal2frq, which enable you to find these approximate scale-frequency relationships
for specified wavelets and scales.

The basic approach identifies the peak power in the Fourier transform of the wavelet as
its center frequency and divides that value by the product of the scale and the sampling
interval. See scal2frq for details. The following example shows the match between the
estimated center frequency of the db8 wavelet and a sinusoid of the same frequency.
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The relationship between scale and frequency in the CWT is also explored in “Continuous
Wavelet Transform as a Bandpass Filter” on page 1-98.

Shifting
Shifting a wavelet simply means delaying (or advancing) its onset. Mathematically,
delaying a function f(t) by k is represented by f(t – k):

CWT as a Windowed Transform
In “Short-Time Fourier Transform” on page 1-87, the STFT is described as a windowing of
the signal to create a local frequency analysis. A shortcoming of the STFT approach is
that the window size is constant. There is a trade off in the choice of window size. A
longer time window improves frequency resolution while resulting in poorer time
resolution because the Fourier transform loses all time resolution over the duration of the
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window. Conversely, a shorter time window improves time localization while resulting in
poorer frequency resolution.

Wavelet analysis represents the next logical step: a windowing technique with variable-
sized regions. Wavelet analysis allows the use of long time intervals where you want more
precise low-frequency information, and shorter regions where you want high-frequency
information.

The following figure contrasts the different ways the STFT and wavelet analysis
decompose the time-frequency plane.
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Continuous Wavelet Transform as a Bandpass Filter
In this section...
“CWT as a Filtering Technique” on page 1-98
“DFT-Based Continuous Wavelet Transform” on page 1-100

CWT as a Filtering Technique
The continuous wavelet transform (CWT) computes the inner product of a signal, f (t),
with translated and dilated versions of an analyzing wavelet, ψ(t) . The definition of the
CWT is:

C(a, b; f (t), ψ(t)) =∫−∞
∞

f (t)1
aψ* t − b

a dt

You can also interpret the CWT as a frequency-based filtering of the signal by rewriting
the CWT as an inverse Fourier transform.

C(a, b; f (t), ψ(t)) = 1
2π∫−∞

∞
f (ω)ψ (aω)eiωbdω

where f (ω) and ψ (ω) are the Fourier transforms of the signal and the wavelet.

From the preceding equations, you can see that stretching a wavelet in time causes its
support in the frequency domain to shrink. In addition to shrinking the frequency support,
the center frequency of the wavelet shifts toward lower frequencies. The following figure
demonstrates this effect for a hypothetical wavelet and scale (dilation) factors of 1,2, and
4.
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This depicts the CWT as a bandpass filtering of the input signal. CWT coefficients at lower
scales represent energy in the input signal at higher frequencies, while CWT coefficients
at higher scales represent energy in the input signal at lower frequencies. However,
unlike Fourier bandpass filtering, the width of the bandpass filter in the CWT is inversely
proportional to scale. The width of the CWT filters decreases with increasing scale. This
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follows from the uncertainty relationships between the time and frequency support of a
signal: the broader the support of a signal in time, the narrower its support in frequency.
The converse relationship also holds.

In the wavelet transform, the scale, or dilation operation is defined to preserve energy. To
preserve energy while shrinking the frequency support requires that the peak energy
level increases. The implementation of cwt in Wavelet Toolbox uses L1 normalization. The
quality factor, or Q factor of a filter is the ratio of its peak energy to bandwidth. Because
shrinking or stretching the frequency support of a wavelet results in commensurate
increases or decreases in its peak energy, wavelets are often referred to as constant-Q
filters.

DFT-Based Continuous Wavelet Transform
The equation in the preceding section defined the CWT as the inverse Fourier transform
of a product of Fourier transforms.

C(a, b; f (t), ψ(t)) = 1
2π∫−∞

∞
f
∧
(ω)ψ*(aω)e jωbdω

The time variable in the inverse Fourier transform is the translation parameter, b.

This suggests that you can compute the CWT with the inverse Fourier transform. Because
there are efficient algorithms for the computation of the discrete Fourier transform and
its inverse, you can often achieve considerable savings by using fft and ifft when
possible.

To obtain a picture of the CWT in the Fourier domain, start with the definition of the
wavelet transform:

< f (t), ψa, b(t) > = 1
a∫−∞

∞
f (t)ψ*( t − b

a )dt

If you define:

ψa(t) = 1
aψ*(− t/a)

you can rewrite the wavelet transform as

(f ∗ ψa)(b) =∫−∞
∞

f (t)ψa(b− t)dt
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which explicitly expresses the CWT as a convolution.

To implement the discretized version of the CWT, assume that the input sequence is a
length N vector, x[n]. The discrete version of the preceding convolution is:

Wa[b] = ∑
n = 0

N − 1
x[n] ψa[b− n]

To obtain the CWT, it appears you have to compute the convolution for each value of the
shift parameter, b, and repeat this process for each scale, a.

However, if the two sequences are circularly-extended (periodized to length N), you can
express the circular convolution as a product of discrete Fourier transforms. The CWT is
the inverse Fourier transform of the product

Wa(b) = 1
N

2π
Δt ∑k = 0

N − 1
X
∧

(2πk/NΔt)ψ∧ * (a2πk/NΔt)e j2πkb/N

where Δt is the sampling interval (period).

Expressing the CWT as an inverse Fourier transform enables you to use the
computationally-efficient fft and ifft algorithms to reduce the cost of computing
convolutions.

The cwt function implements the CWT.
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Inverse Continuous Wavelet Transform
The icwt function implements the inverse CWT. Using icwt requires that you obtain the
CWT from cwt.

Because the CWT is a redundant transform, there is not a unique way to define the
inverse. The inverse CWT implemented in the Wavelet Toolbox uses the analytic Morse
wavelet and L1 normalization.

The inverse CWT is classically presented in the double-integral form. Assume you have a
wavelet with a Fourier transform that satisfies the admissibility condition:

Cψ =∫−∞
∞ ψ∧(ω) 2

ω dω < ∞

For wavelets satisfying the admissibility condition and finite-energy functions, f(t), you
can define the inverse CWT as:

f (t) = 1
Cψ∫a∫b < f (t), ψa, b(t) > ψa, b(t) db da

a2

For analyzing wavelets and functions satisfying the following conditions, a single integral
formula for the inverse CWT exists. These conditions are:

• The analyzed function, f(t), is real-valued and the analyzing wavelet has a real-valued
Fourier transform.

• The analyzed function, f(t), is real-valued and the Fourier transform of the analyzing
wavelet has support only on the set of nonnegative frequencies. This is referred to as
an analytic wavelet. A function whose Fourier transform only has support on the set of
nonnegative frequencies must be complex-valued.

The preceding conditions constrain the set of possible analyzing wavelets. Wavelets
supported by cwt are analytic. Because the toolbox only supports the analysis of real-
valued functions, the real-valued condition on the analyzed function is always satisfied.

To motivate the single integral formula, let ψ1 and ψ2 be two wavelets that satisfy the
following two-wavelet admissibility condition:

∫
ψ1*
∧

(ω) ψ2
∧ (ω)

ω dω < ∞

1 Getting Started with Wavelet Toolbox Software

1-102



Define the constant:

Cψ1, ψ2 =∫ψ1*
∧

(ω)ψ2
∧ (ω)

ω dω

The above constant may be complex-valued. Let f(t) and g(t) be two finite energy
functions. If the two-wavelet admissibility condition is satisfied, the following equality
holds:

Cψ1, ψ2 < f , g > =∫∫ < f , ψ1 > < g, ψ2 >* dbda
a

where < , > denotes the inner product, * denotes the complex conjugate, and the
dependence of ψ1 and ψ2 on scale and position has been suppressed for convenience.

The key to the single integral formula for the inverse CWT is to recognize that the two-
wavelet admissibility condition can be satisfied even if one of the wavelets is not
admissible. In other words, it is not necessary that both ψ1 and ψ2 be separately
admissible. You can also relax the requirements further by allowing one of the functions
and wavelets to be distributions. By first letting g(t) be the Dirac delta function (a
distribution) and also allowing ψ2 to be the Dirac delta function, you can derive the single
integral formula for the inverse CWT

f (t) = 2 Re 1
Cψ1, δ∫0

∞
< f (t), ψ1(t) > da

a

where Re{ } denotes the real part.

The preceding equation demonstrates that you can reconstruct the signal by summing the
scaled CWT coefficients over all scales.

By summing the scaled CWT coefficients from select scales, you obtain an approximation
to the original signal. This is useful in situations where your phenomenon of interest is
localized in scale.

icwt implements a discretized version of the above integral.

 Inverse Continuous Wavelet Transform

1-103



Interpreting Continuous Wavelet Coefficients
Because the CWT is a redundant transform and the CWT coefficients depend on the
wavelet, it can be challenging to interpret the results.

To help you in interpreting CWT coefficients, it is best to start with a simple signal to
analyze and an analyzing wavelet with a simple structure.

A signal feature that wavelets are very good at detecting is a discontinuity, or singularity.
Abrupt transitions in signals result in wavelet coefficients with large absolute values.

For the signal create a shifted impulse. The impulse occurs at point 500.

x = zeros(1000,1);
x(500) = 1;

For the wavelet, pick the Haar wavelet.

[~,psi,xval] = wavefun('haar',10);
plot(xval,psi); axis([0 1 -1.5 1.5]);
title('Haar Wavelet');

To compute the CWT using the Haar wavelet at scales 1 to 128, enter:

CWTcoeffs = cwt(x,1:128,'haar');

CWTcoeffs is a 128-by-1000 matrix. Each row of the matrix contains the CWT
coefficients for one scale. There are 128 rows because the SCALES input to cwt is 1:128.
The column dimension of the matrix matches the length of the input signal.
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Recall that the CWT of a 1D signal is a function of the scale and position parameters. To
produce a plot of the CWT coefficients, plot position along the x-axis, scale along the y-
axis, and encode the magnitude, or size of the CWT coefficients as color at each point in
the x-y, or time-scale plane.

You can produce this plot using cwt with the optional input argument 'plot'.

cwt(x,1:128,'haar','plot'); 
colormap jet; colorbar;

The preceding figure was modified with text labels to explicitly show which colors
indicate large and small CWT coefficients.

You can also plot the size of the CWT coefficients in 3D with

cwt(x,1:64,'haar','3Dplot'); colormap jet;

where the number of scales has been reduced to aid in visualization.

Examining the CWT of the shifted impulse signal, you can see that the set of large CWT
coefficients is concentrated in a narrow region in the time-scale plane at small scales
centered around point 500. As the scale increases, the set of large CWT coefficients
becomes wider, but remains centered around point 500. If you trace the border of this
region, it resembles the following figure.
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This region is referred to as the cone of influence of the point t=500 for the Haar wavelet.
For a given point, the cone of influence shows you which CWT coefficients are affected by
the signal value at that point.

To understand the cone of influence, assume that you have a wavelet supported on [-C, C].
Shifting the wavelet by b and scaling by a results in a wavelet supported on [-Ca+b, Ca
+b]. For the simple case of a shifted impulse, δ(t − τ), the CWT coefficients are only
nonzero in an interval around τ equal to the support of the wavelet at each scale. You can
see this by considering the formal expression of the CWT of the shifted impulse.

C(a, b; δ(t − τ), ψ(t)) =∫−∞
∞

δ(t − τ) 1
aψ*( t − b

a )dt = 1
aψ*(τ − b

a )

For the impulse, the CWT coefficients are equal to the conjugated, time-reversed, and
scaled wavelet as a function of the shift parameter, b. You can see this by plotting the
CWT coefficients for a select few scales.

subplot(311)
plot(CWTcoeffs(10,:)); title('Scale 10');
subplot(312)
plot(CWTcoeffs(50,:)); title('Scale 50');
subplot(313)
plot(CWTcoeffs(90,:)); title('Scale 90');

1 Getting Started with Wavelet Toolbox Software

1-106



The cone of influence depends on the wavelet. You can find and plot the cone of influence
for a specific wavelet with conofinf.

The next example features the superposition of two shifted impulses,
δ(t − 300) + δ(t − 500). In this case, use the Daubechies' extremal phase wavelet with four
vanishing moments, db4. The following figure shows the cone of influence for the points
300 and 500 using the db4 wavelet.

Look at point 400 for scale 20. At that scale, you can see that neither cone of influence
overlaps the point 400. Therefore, you can expect that the CWT coefficient will be zero at
that point and scale. The signal is only nonzero at two values, 300 and 500, and neither
cone of influence for those values includes the point 400 at scale 20. You can confirm this
by entering:
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x = zeros(1000,1);
x([300 500]) = 1;
CWTcoeffs = cwt(x,1:128,'db4');
plot(CWTcoeffs(20,:)); grid on;

Next, look at the point 400 at scale 80. At scale 80, the cones of influence for both points
300 and 500 include the point 400. Even though the signal is zero at point 400, you obtain
a nonzero CWT coefficient at that scale. The CWT coefficient is nonzero because the
support of the wavelet has become sufficiently large at that scale to allow signal values
100 points above and below to affect the CWT coefficient. You can confirm this by
entering:

plot(CWTcoeffs(80,:));
grid on;
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In the preceding example, the CWT coefficients became large in the vicinity of an abrupt
change in the signal. This ability to detect discontinuities is a strength of the wavelet
transform. The preceding example also demonstrated that the CWT coefficients localize
the discontinuity best at small scales. At small scales, the small support of the wavelet
ensures that the singularity only affects a small set of wavelet coefficients.

To demonstrate why the wavelet transform is so adept at detecting abrupt changes in the
signal, consider a shifted Heaviside, or unit step signal.

x = [zeros(500,1); ones(500,1)];
CWTcoeffs = cwt(x,1:64,'haar','plot'); colormap jet;

Similar to the shifted impulse example, the abrupt transition in the shifted step function
results in large CWT coefficients at the discontinuity. The following figure illustrates why
this occurs.
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A B C

In the preceding figure, the red function is the shifted unit step function. The black
functions labeled A, B, and C depict Haar wavelets at the same scale but different
positions. You can see that the CWT coefficients around position A are zero. The signal is
zero in that neighborhood and therefore the wavelet transform is also zero because any
wavelet integrates to zero.

Note the Haar wavelet centered around position B. The negative part of the Haar wavelet
overlaps with a region of the step function that is equal to 1. The CWT coefficients are
negative because the product of the Haar wavelet and the unit step is a negative
constant. Integrating over that area yields a negative number.

Note the Haar wavelet centered around position C. Here the CWT coefficients are zero.
The step function is equal to one. The product of the wavelet with the step function is
equal to the wavelet. Integrating any wavelet over its support is zero. This is the zero
moment property of wavelets.

At position B, the Haar wavelet has already shifted into the nonzero portion of the step
function by 1/2 of its support. As soon as the support of the wavelet intersects with the
unity portion of the step function, the CWT coefficients are nonzero. In fact, the situation
illustrated in the previous figure coincides with the CWT coefficients achieving their
largest absolute value. This is because the entire negative deflection of the wavelet
oscillation overlaps with the unity portion of the unit step while none of the positive
deflection of the wavelet does. Once the wavelet shifts to the point that the positive
deflection overlaps with the unit step, there will be some positive contribution to the
integral. The wavelet coefficients are still negative (the negative portion of the integral is
larger in area), but they are smaller in absolute value than those obtained at position B.
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The following figure illustrates two other positions where the wavelet intersects the unity
portion of the unit step.

In the top figure, the wavelet has just begun to overlap with the unity portion of the unit
step. In this case, the CWT coefficients are negative, but not as large in absolute value as
those obtained at position B. In the bottom figure, the wavelet has shifted past position B
and the positive deflection of the wavelet begins to contribute to the integral. The CWT
coefficients are still negative, but not as large in absolute value as those obtained at
position B.

You can now visualize how the wavelet transform is able to detect discontinuities. You can
also visualize in this simple example exactly why the CWT coefficients are negative in the
CWT of the shifted unit step using the Haar wavelet. Note that this behavior differs for
other wavelets.

x = [zeros(500,1); ones(500,1)];
CWTcoeffs = cwt(x,1:64,'haar','plot'); colormap jet;
% plot a few scales for visualization
subplot(311);
plot(CWTcoeffs(5,:)); title('Scale 5');
subplot(312);
plot(CWTcoeffs(10,:)); title('Scale 10');
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subplot(313);
plot(CWTcoeffs(50,:)); title('Scale 50');

Next consider how the CWT represents smooth signals. Because sinusoidal oscillations
are a common phenomenon, this section examines how sinusoidal oscillations in the
signal affect the CWT coefficients. To begin, consider the sym4 wavelet at a specific scale
superimposed on a sine wave.

Recall that the CWT coefficients are obtained by computing the product of the signal with
the shifted and scaled analyzing wavelet and integrating the result. The following figure
shows the product of the wavelet and the sinusoid from the preceding figure.

You can see that integrating over this product produces a positive CWT coefficient. That
results because the oscillation in the wavelet approximately matches a period of the sine
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wave. The wavelet is in phase with the sine wave. The negative deflections of the wavelet
approximately match the negative deflections of the sine wave. The same is true of the
positive deflections of both the wavelet and sinusoid.

The following figure shifts the wavelet 1/2 of the period of the sine wave.

Examine the product of the shifted wavelet and the sinusoid.

You can see that integrating over this product produces a negative CWT coefficient. That
results because the wavelet is 1/2 cycle out of phase with the sine wave. The negative
deflections of the wavelet approximately match the positive deflections of the sine wave.
The positive deflections of the wavelet approximately match the negative deflections of
the sinusoid.
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Finally, shift the wavelet approximately one quarter cycle of the sine wave.

The following figure shows the product of the shifted wavelet and the sinusoid.

Integrating over this product produces a CWT coefficient much smaller in absolute value
than either of the two previous examples. That results because the negative deflection of
the wavelet approximately aligns with a positive deflection of the sine wave. Also, the
main positive deflection of the wavelet approximately aligns with a positive deflection of
the sine wave. The resulting product looks much more like a wavelet than the other two
products. If it looked exactly like a wavelet, the integral would be zero.

At scales where the oscillation in the wavelet occurs on either a much larger or smaller
scale than the period of the sine wave, you obtain CWT coefficients near zero. The
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following figure illustrates the case where the wavelet oscillates on a much smaller scale
than the sinusoid.

The product shown in the bottom pane closely resembles the analyzing wavelet.
Integrating this product results in a CWT coefficient near zero.

The following example constructs a 60-Hz sine wave and obtains the CWT using the sym8
wavelet.

t = linspace(0,1,1000);
x = cos(2*pi*60*t);
CWTcoeffs = cwt(x,1:64,'sym8','plot'); colormap jet;

Note that the CWT coefficients are large in absolute value around scales 9 to 21. You can
find the pseudo-frequencies corresponding to these scales using the command:
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freq = scal2frq(9:21,'sym8',1/1000);

Note that the CWT coefficients are large at scales near the frequency of the sine wave.
You can clearly see the sinusoidal pattern in the CWT coefficients at these scales with the
following code.

surf(CWTcoeffs); colormap jet;
shading('interp'); view(-60,12);

The final example constructs a signal consisting of both abrupt transitions and smooth
oscillations. The signal is a 2-Hz sinusoid with two introduced discontinuities.

N = 1024;
t = linspace(0,1,1024);
x = 4*sin(4*pi*t);
x = x - sign(t - .3) - sign(.72 - t);
plot(t,x); xlabel('t'); ylabel('x');
grid on;
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Note the discontinuities near t=0.3 and t=0.7.

Obtain and plot the CWT using the sym4 wavelet.

CWTcoeffs = cwt(x,1:180,'sym4');
imagesc(t,1:180,abs(CWTcoeffs)); 
colormap jet; axis xy;
xlabel('t'); ylabel('Scales');

Note that the CWT detects both the abrupt transitions and oscillations in the signal. The
abrupt transitions affect the CWT coefficients at all scales and clearly separate
themselves from smoother signal features at small scales. On the other hand, the maxima
and minima of the 2–Hz sinusoid are evident in the CWT coefficients at large scales and
not apparent at small scales.
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The following general principles are important to keep in mind when interpreting CWT
coefficients.

• Cone of influence— Depending on the scale, the CWT coefficient at a point can be
affected by signal values at points far removed. You have to take into account the
support of the wavelet at specific scales. Use conofinf to determine the cone of
influence. Not all wavelets are equal in their support. For example, the Haar wavelet
has smaller support at all scales than the sym4 wavelet.

• Detecting abrupt transitions— Wavelets are very useful for detecting abrupt
changes in a signal. Abrupt changes in a signal produce relatively large wavelet
coefficients (in absolute value) centered around the discontinuity at all scales. Because
of the support of the wavelet, the set of CWT coefficients affected by the singularity
increases with increasing scale. Recall this is the definition of the cone of influence.
The most precise localization of the discontinuity based on the CWT coefficients is
obtained at the smallest scales.

• Detecting smooth signal features— Smooth signal features produce relatively large
wavelet coefficients at scales where the oscillation in the wavelet correlates best with
the signal feature. For sinusoidal oscillations, the CWT coefficients display an
oscillatory pattern at scales where the oscillation in the wavelet approximates the
period of the sine wave.

The basic algorithm for the continuous wavelet transform (CWT) is:

1 Take a wavelet and compare it to a section at the start of the original signal.
2 Calculate a number, C, that represents how closely correlated the wavelet is with this

section of the signal. The larger the number C is in absolute value, the more the
similarity. This follows from the fact the CWT coefficients are calculated with an inner
product. See “Inner Products” on page 1-84 for more information on how inner
products measure similarity. If the signal energy and the wavelet energy are equal to
one, C may be interpreted as a correlation coefficient. Note that, in general, the
signal energy does not equal one and the CWT coefficients are not directly
interpretable as correlation coefficients.

As described in “Continuous and Discrete Wavelet Transforms” on page 1-47, the
CWT coefficients explicitly depend on the analyzing wavelet. Therefore, the CWT
coefficients are different when you compute the CWT for the same signal using
different wavelets.
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3 Shift the wavelet to the right and repeat steps 1 and 2 until you've covered the whole
signal.

4 Scale (stretch) the wavelet and repeat steps 1 through 3.

5 Repeat steps 1 through 4 for all scales.
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Critically-Sampled Discrete Wavelet Transform
Calculating wavelet coefficients at every possible scale is a fair amount of work, and it
generates an awful lot of data. What if we choose only a subset of scales and positions at
which to make our calculations?

It turns out, rather remarkably, that if we choose scales and positions based on powers of
two — so-called dyadic scales and positions — then our analysis will be much more
efficient and just as accurate. We obtain such an analysis from the discrete wavelet
transform (DWT). For more information on DWT, see “Algorithms” in the Wavelet Toolbox
User's Guide.

An efficient way to implement this scheme using filters was developed in 1988 by Mallat
(see [Mal89] in “References” on page 1-149). The Mallat algorithm is in fact a classical
scheme known in the signal processing community as a two-channel subband coder (see
page 1 of the book Wavelets and Filter Banks, by Strang and Nguyen [StrN96]).

This very practical filtering algorithm yields a fast wavelet transform — a box into which a
signal passes, and out of which wavelet coefficients quickly emerge. Let's examine this in
more depth.

One-Stage Filtering: Approximations and Details
For many signals, the low-frequency content is the most important part. It is what gives
the signal its identity. The high-frequency content, on the other hand, imparts flavor or
nuance. Consider the human voice. If you remove the high-frequency components, the
voice sounds different, but you can still tell what's being said. However, if you remove
enough of the low-frequency components, you hear gibberish.

In wavelet analysis, we often speak of approximations and details. The approximations are
the high-scale, low-frequency components of the signal. The details are the low-scale,
high-frequency components.

The filtering process, at its most basic level, looks like this.
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The original signal, S, passes through two complementary filters and emerges as two
signals.

Unfortunately, if we actually perform this operation on a real digital signal, we wind up
with twice as much data as we started with. Suppose, for instance, that the original signal
S consists of 1000 samples of data. Then the resulting signals will each have 1000
samples, for a total of 2000.

These signals A and D are interesting, but we get 2000 values instead of the 1000 we had.
There exists a more subtle way to perform the decomposition using wavelets. By looking
carefully at the computation, we may keep only one point out of two in each of the two
2000-length samples to get the complete information. This is the notion of downsampling.
We produce two sequences called cA and cD.

The process on the right, which includes downsampling, produces DWT coefficients.

To gain a better appreciation of this process, let's perform a one-stage discrete wavelet
transform of a signal. Our signal will be a pure sinusoid with high-frequency noise added
to it.

Here is our schematic diagram with real signals inserted into it.
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The MATLAB code needed to generate s, cD, and cA is

s
= sin(20.*linspace(0,pi,1000)) + 0.5.*rand(1,1000);
[cA,cD] = dwt(s,'db2');

where db2 is the name of the wavelet we want to use for the analysis.

Notice that the detail coefficients cD are small and consist mainly of a high-frequency
noise, while the approximation coefficients cA contain much less noise than does the
original signal.

[length(cA) length(cD)]

ans =
   501  501

You may observe that the actual lengths of the detail and approximation coefficient
vectors are slightly more than half the length of the original signal. This has to do with
the filtering process, which is implemented by convolving the signal with a filter. The
convolution “smears” the signal, introducing several extra samples into the result.
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Multiple-Level Decomposition
The decomposition process can be iterated, with successive approximations being
decomposed in turn, so that one signal is broken down into many lower resolution
components. This is called the wavelet decomposition tree.

Looking at a signal's wavelet decomposition tree can yield valuable information.

Number of Levels

Since the analysis process is iterative, in theory it can be continued indefinitely. In reality,
the decomposition can proceed only until the individual details consist of a single sample
or pixel. In practice, you'll select a suitable number of levels based on the nature of the
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signal, or on a suitable criterion such as entropy (see “Choosing the Optimal
Decomposition” in the Wavelet Toolbox User's Guide).

1 Getting Started with Wavelet Toolbox Software

1-124



Critically-Sampled Wavelet Reconstruction
We've learned how the discrete wavelet transform can be used to analyze, or decompose,
signals and images. This process is called decomposition or analysis. The other half of the
story is how those components can be assembled back into the original signal without loss
of information. This process is called reconstruction, or synthesis. The mathematical
manipulation that effects synthesis is called the inverse discrete wavelet transform
(IDWT).

To synthesize a signal using Wavelet Toolbox software, we reconstruct it from the wavelet
coefficients.

Where wavelet analysis involves filtering and downsampling, the wavelet reconstruction
process consists of upsampling and filtering. Upsampling is the process of lengthening a
signal component by inserting zeros between samples.

The toolbox includes commands, like idwt and waverec, that perform single-level or
multilevel reconstruction, respectively, on the components of 1-D signals. These
commands have their 2-D and 3-D analogs, idwt2, waverec2, idwt3, and waverec3.
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Reconstruction Filters
The filtering part of the reconstruction process also bears some discussion, because it is
the choice of filters that is crucial in achieving perfect reconstruction of the original
signal.

The downsampling of the signal components performed during the decomposition phase
introduces a distortion called aliasing. It turns out that by carefully choosing filters for
the decomposition and reconstruction phases that are closely related (but not identical),
we can “cancel out” the effects of aliasing.

A technical discussion of how to design these filters is available on page 347 of the book
Wavelets and Filter Banks, by Strang and Nguyen. The low- and high-pass decomposition
filters (L and H), together with their associated reconstruction filters (L' and H'), form a
system of what is called quadrature mirror filters:

Reconstructing Approximations and Details
We have seen that it is possible to reconstruct our original signal from the coefficients of
the approximations and details.
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It is also possible to reconstruct the approximations and details themselves from their
coefficient vectors. As an example, let's consider how we would reconstruct the first-level
approximation A1 from the coefficient vector cA1.

We pass the coefficient vector cA1 through the same process we used to reconstruct the
original signal. However, instead of combining it with the level-one detail cD1, we feed in
a vector of zeros in place of the detail coefficients vector:

The process yields a reconstructed approximation A1, which has the same length as the
original signal S and which is a real approximation of it.

Similarly, we can reconstruct the first-level detail D1, using the analogous process:

The reconstructed details and approximations are true constituents of the original signal.
In fact, we find when we combine them that

A1 + D1 = S.

Note that the coefficient vectors cA1 and cD1 — because they were produced by
downsampling and are only half the length of the original signal — cannot directly be
combined to reproduce the signal. It is necessary to reconstruct the approximations and
details before combining them.
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Extending this technique to the components of a multilevel analysis, we find that similar
relationships hold for all the reconstructed signal constituents. That is, there are several
ways to reassemble the original signal:

Wavelets From Conjugate Mirror Filters
In the section “Reconstruction Filters” on page 1-126, we spoke of the importance of
choosing the right filters. In fact, the choice of filters not only determines whether perfect
reconstruction is possible, it also determines the shape of the wavelet we use to perform
the analysis.

To construct a wavelet of some practical utility, you seldom start by drawing a waveform.
Instead, it usually makes more sense to design the appropriate quadrature mirror filters,
and then use them to create the waveform. Let's see how this is done by focusing on an
example.

Consider the low-pass reconstruction filter (L') for the db2 wavelet.

The filter coefficients can be obtained from the dbaux function. By reversing the order of
the scaling filter vector and multiplying every even element (indexing from 1) by (-1), you
obtain the high-pass filter.

Repeatedly upsampling by two and convolving the output with the scaling filter produces
the Daubechies' extremal phase wavelet.

 L = dbaux(2);
 H = wrev(L).*[1 -1 1 -1];
 HU = dyadup(H,0);
 HU = conv(HU,L);
 plot(HU); title('1st Iteration');
 H1 = conv(dyadup(HU,0),L);
 H2 = conv(dyadup(H1,0),L);
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 H3 = conv(dyadup(H2,0),L);
 H4 = conv(dyadup(H3,0),L);
 figure;
 for k =1:4
 subplot(2,2,k);
 eval(['plot(H' num2str(k) ')']);
 axis tight;
 end

The curve begins to look progressively more like the db2 wavelet. This means that the
wavelet's shape is determined entirely by the coefficients of the reconstruction filters.

This relationship has profound implications. It means that you cannot choose just any
shape, call it a wavelet, and perform an analysis. At least, you can't choose an arbitrary
wavelet waveform if you want to be able to reconstruct the original signal accurately. You
are compelled to choose a shape determined by quadrature mirror decomposition filters.

Scaling Function

We've seen the interrelation of wavelets and quadrature mirror filters. The wavelet
function ψ is determined by the high-pass filter, which also produces the details of the
wavelet decomposition.

There is an additional function associated with some, but not all, wavelets. This is the so-
called scaling function, ϕ. The scaling function is very similar to the wavelet function. It is
determined by the low-pass quadrature mirror filters, and thus is associated with the
approximations of the wavelet decomposition.
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In the same way that iteratively upsampling and convolving the high-pass filter produces
a shape approximating the wavelet function, iteratively upsampling and convolving the
low-pass filter produces a shape approximating the scaling function.
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Wavelet Synchrosqueezing
What is Wavelet Synchrosqueezing?
The wavelet synchrosqueezed transform is a time-frequency analysis method that is
useful for analyzing multicomponent signals with oscillating modes. Examples of signals
with oscillating modes include speech waveforms, machine vibrations, and physiologic
signals. Many of these real-world signals with oscillating modes can be written as a sum
of amplitude-modulated and frequency-modulated components. A general expression for
these types of signals with summed components is

∑
k = 1

K
Ak(t)cos(2πϕk(t)),

where Ak(t) is the slowly varying amplitude and ϕk(t) is the instantaneous phase. A
truncated Fourier series, where the amplitude and frequency do not vary with time, is a
special case of these signals.

The wavelet transform and other linear time-frequency analysis methods decompose
these signals into their components by correlating the signal with a dictionary of time-
frequency atoms [1]. The wavelet transform uses translated and scaled versions of a
mother wavelet as its time-frequency atom. Some time-frequency spreading is associated
with all of these time-frequency atoms, which affects the sharpness of the signal analysis.

The wavelet synchrosqueezed transform is a time-frequency method that reassigns the
signal energy in frequency. This reassignment compensates for the spreading effects
caused by the mother wavelet. Unlike other time-frequency reassignment methods,
synchrosqueezing reassigns the energy only in the frequency direction, which preserves
the time resolution of the signal. By preserving the time, the inverse synchrosqueezing
algorithm can reconstruct an accurate representation of the original signal. To use
synchrosqueezing, each term in the summed components signal expression must be an
intrinsic mode type (IMT) function. For details on the criteria that constitute IMTs, see
[2].

Algorithm
The synchrosqueezing algorithm uses these steps.

1 Obtain the CWT of the input signal. For use with synchrosqueezing, the CWT must
use an analytic wavelet to capture instantaneous frequency information.
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2 Extract the instantaneous frequencies from the CWT output, Wf , using a phase
transform, ωf . This phase transform is proportional to the first derivative of the CWT
with respect to the translation, u. In this definition of the phase transform, s is the
scale.

ωf (s, u) =
∂tWf (s, u)

2πiWf (s, u) .

The scales are defined as s =
f χ
f , where f χ is the peak frequency and f is the

frequency.

To extract the instantaneous frequency, consider a simple sine wave, ei2πf0t.

a Obtain the wavelet transform,

Wf ei2πf0t = ei2πf0u,

where χ sf0  is the Fourier transform of the wavelet at sf0.
b Take the partial derivative of the previous equation with respect to the

translation, u:

∂
∂u Wf ei2πf0t = i2πf0χ f χ ei2πf0u

c Divide the partial derivative by the wavelet transform and i2π to obtain the
instantaneous frequency, f0.

3 “Squeeze” the CWT over regions where the phase transform is constant. The
resulting instantaneous frequency value is reassigned to a single value at the
centroid of the CWT time-frequency region. This reassignment results in sharpened
output from the synchrosqueezed transform when compared to the CWT.

As described, synchrosqueezing uses the continuous wavelet transform (CWT) and its first
derivative with respect to translation. The CWT is invertible and since the
synchrosqueezed transform inherits the CWT invertibility property, the signal can be
reconstructed.

Required Component Separation
With synchrosqueezing the signal components must be IMTs that are well separated in
the time-frequency plane. If this requirement is met, you can track the trajectory of the
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instantaneous frequencies along a curve. The curves show the location of the maximum
energy as it varies over time for each signal mode. See wsstridge for a description of
the trajectory curves algorithm.

This inequality defines the required separation criteria:

ϕk′ (t)− ϕk− 1′ (t) ≥ 1
4 ϕk′ (t) + ϕk− 1′ (t)

where ϕ′ is the instantaneous frequency and d is a positive separation constant [2]. To
determine this required separation, suppose a bump wavelet, x, has a Fourier transform
with support in the range εx− Δ, εx + Δ . Because the bump wavelet has a center

frequency of 5
2π  Hz, use 5

2π − 1
2, 5

2π + 1
2  as the interval. Then solve Δ < εx

d
1 + d  for d to

get d > 1
4  for the bump wavelet.

To show this separation requirement for the bump wavelet, consider a signal composed of
cos(2π(0.1t)) + sin((2π(0.2t)). Using the bump wavelet to obtain the CWT, the
instantaneous phase of the cosine is ϕ1(t) = 0.1t, and the instantaneous frequency is the
first derivative, 0.1. Likewise, for the sine component, the instantaneous frequency is 0.2.
The separation inequality, 0.1 ≥ 1

4 0.3 , is true. Therefore, the two signal components
are IMT functions and are separated enough to use the synchrosqueezed transform.

If you use higher frequencies, such as 0.3 and 0.4 for the instantaneous frequencies, the
inequality is 0.1 ≥ 1

4 0.7 , which is not true. Because these signal components are not
well-separated IMTs the signal, cos(2π(0.3t)) + sin((2π(0.4t)), is not appropriate for use
with the synchrosqueezed transform.

Examples
CWT vs Synchrosqueezed Transform Smearing

Comparing the CWT with the synchrosqueezed transform of a quadratic chirp shows
reduced energy smearing for the synchrosqueezed transform result.

load quadchirp;
Fs = 1000;
[wt,f] = cwt(quadchirp,'bump',Fs);
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subplot(2,1,1)
hp = pcolor(tquad,f,abs(wt));
hp.EdgeColor = 'none';
xlabel('Time (secs)')
ylabel('Frequency (Hz)')
title('CWT of Quadratic Chirp')
subplot(2,1,2)
wsst(quadchirp,Fs,'bump')

Low-Frequency vs. High-Frequency Component Separation

This example shows the separation needed between signal components to obtain usable
results from the synchrosqueezed transform. The signal components are 0.025, 0.05,
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0.20, and 0.225 cycles per sample. The high-frequency components, 0.20 and 0.225, do
not have enough separation, so you cannot express the whole signal as a sum of well-
separated IMTs.

Define the signal and plot the synchrosqueezed components.

t = 0:2000;
x1 = cos(2*pi*.025*t);
x2 = cos(2*pi*.05*t);
x3 = cos(2*pi*.20*t);
x4 = cos(2*pi*.225*t);
x =x1+x2+x3+x4;
[sst,f] = wsst(x);
contour(t,f,abs(sst))
xlabel('Time')
ylabel('Normalized Frequency')
title('Inadequate High-Frequency Separation')
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Increase the separation of the high-frequency components, and then plot the
synchrosqueezed components again.

x4 = cos(2*pi*.3*t);
x =x1+x2+x3+x4;
[sst,f] = wsst(x);
figure
contour(t,f,abs(sst))
xlabel('Time')
ylabel('Normalized Frequency')
title('Adequate High-Frequency Separation')
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All the signal components are now well-separated IMTs and are separated enough to
distinguish from each other. This signal is appropriate for use with the synchrosqueezing
algorithm.

Region With Inadequate Separation

This example shows a signal with two linear chirps. A linear chirp is defined as

f (t) = cos ϕ + 2π f0t + mt2

2 .
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Its first derivative, f0 + mt, defines the instantaneous frequency line. Use the bump
wavelet and its separation constant of 0.25. To determine the region where the two chirp
signals with instantaneous frequencies of 0.4 and 0.1 cycles per sample are not separated
enough, solve this equation:

y1− y2 = 0 . 25 y1 + y2 .

y1 = −0 . 15
1000 x + 0 . 4 and y2 = 0 . 15

1000x + 0 . 1 are the instantaneous frequency lines of the
chirps.

t = 0:2000;
y1 = chirp(t,0.4,1000,0.25);
y2 = chirp(t,0.1,1000,0.25);
y = y1+y2;
wsst(y,'bump')
xlabel('Samples')
h1 = line([583 583], [0 0.5]);
h2 = line([1417 1417], [0 0.5]);
h1.Color='white';
h2.Color='white';
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The vertical lines are the bounds of the region. They indicate that not enough separation
occurs at sample 583 and sample 1417. In the region between the vertical lines, the
signal does not consist of well-separated IMTs. In the regions outside the vertical lines,
the signal has well-separated IMTs. You can obtain good results from the
synchrosqueezed transform in these regions.
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See Also

Related Examples
• “Time-Frequency Reassignment and Mode Extraction with Synchrosqueezing”
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Introduction to Wavelet Families
Several families of wavelets that have proven to be especially useful are included in this
toolbox. What follows is an introduction to some wavelet families.

• “Haar” on page 1-142
• “Daubechies” on page 1-142
• “Biorthogonal” on page 1-143
• “Coiflets” on page 1-145
• “Symlets” on page 1-145
• “Morlet” on page 1-146
• “Mexican Hat” on page 1-146
• “Meyer” on page 1-147
• “Other Real Wavelets” on page 1-147
• “Complex Wavelets” on page 1-147

To explore all wavelet families on your own, check out the Wavelet Display tool:

1 Type waveletAnalyzer at the MATLAB command line. The Wavelet Analyzer
appears.
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2 Click the Wavelet Display menu item. The Wavelet Display tool appears.
3 Select a family from the Wavelet menu at the top right of the tool.
4 Click the Display button. Pictures of the wavelets and their associated filters appear.
5 Obtain more information by clicking the information buttons located at the right.

Haar
Any discussion of wavelets begins with Haar wavelet, the first and simplest. The Haar
wavelet is discontinuous, and resembles a step function. It represents the same wavelet
as Daubechies db1.

Daubechies
Ingrid Daubechies, one of the brightest stars in the world of wavelet research, invented
what are called compactly supported orthonormal wavelets — thus making discrete
wavelet analysis practicable.

The names of the Daubechies family wavelets are written dbN, where N is the order, and
db the “surname” of the wavelet. The db1 wavelet, as mentioned above, is the same as
Haar wavelet. Here are the wavelet functions psi of the next nine members of the family:
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You can obtain a survey of the main properties of this family by typing waveinfo('db')
from the MATLAB command line. See “Daubechies Wavelets: dbN” in the Wavelet Toolbox
User's Guide for more detail.

Biorthogonal
This family of wavelets exhibits the property of linear phase, which is needed for signal
and image reconstruction. By using two wavelets, one for decomposition (on the left side)
and the other for reconstruction (on the right side) instead of the same single one,
interesting properties are derived.
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You can obtain a survey of the main properties of this family by typing
waveinfo('bior') from the MATLAB command line. See “Biorthogonal Wavelet Pairs:
biorNr.Nd” in the Wavelet Toolbox User's Guide for more detail.
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Coiflets
Built by I. Daubechies at the request of R. Coifman. The wavelet function has 2N
moments equal to 0 and the scaling function has 2N-1 moments equal to 0. The two
functions have a support of length 6N-1. You can obtain a survey of the main properties of
this family by typing waveinfo('coif') from the MATLAB command line. See “Coiflet
Wavelets: coifN” in the Wavelet Toolbox User's Guide for more detail.

Symlets
The symlets are nearly symmetrical wavelets proposed by Daubechies as modifications to
the db family. The properties of the two wavelet families are similar. Here are the wavelet
functions psi.

You can obtain a survey of the main properties of this family by typing waveinfo('sym')
from the MATLAB command line. See “Symlet Wavelets: symN” in the Wavelet Toolbox
User's Guide for more detail.
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Morlet
This wavelet has no scaling function, but is explicit.

You can obtain a survey of the main properties of this family by typing
waveinfo('morl') from the MATLAB command line. See “Morlet Wavelet: morl” in the
Wavelet Toolbox User's Guide for more detail.

Mexican Hat
This wavelet has no scaling function and is derived from a function that is proportional to
the second derivative function of the Gaussian probability density function. It is also
knows as the Ricker wavelet.

You can obtain a survey of the main properties of this family by typing
waveinfo('mexh') from the MATLAB command line. See “Mexican Hat Wavelet: mexh”
in the Wavelet Toolbox User's Guide for more information.
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Meyer
The Meyer wavelet and scaling function are defined in the frequency domain.

You can obtain a survey of the main properties of this family by typing
waveinfo('meyer') from the MATLAB command line. See “Meyer Wavelet: meyr” in
the Wavelet Toolbox User's Guide for more detail.

Other Real Wavelets
Some other real wavelets are available in the toolbox:

• Reverse Biorthogonal
• Gaussian derivatives family
• FIR based approximation of the Meyer wavelet

See “Additional Real Wavelets” in the Wavelet Toolbox User's Guide for more information.

Complex Wavelets
Some complex wavelet families are available in the toolbox:

• Gaussian derivatives
• Morlet
• Frequency B-Spline
• Shannon
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See “Complex Wavelets” in the Wavelet Toolbox User's Guide for more information.
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Using Wavelets

This chapter takes you step-by-step through examples that teach you how to use the
graphical tools and command-line functions.

• “Introduction to Wavelet Toolbox App and Functions” on page 2-2
• “Wavelets: Working with Images” on page 2-3
• “Density Estimation Using Wavelets” on page 2-10
• “1-D Wavelet Coefficient Selection Using the Wavelet Analyzer App” on page 2-16
• “2-D Wavelet Coefficient Selection Using the Wavelet Analyzer App” on page 2-25
• “1-D Extension” on page 2-31
• “2-D Extension” on page 2-38
• “Image Fusion” on page 2-41
• “1-D Fractional Brownian Motion Synthesis” on page 2-48
• “New Wavelet for CWT” on page 2-54
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Introduction to Wavelet Toolbox App and Functions
Wavelet Toolbox software contains graphical tools and command-line functions that let
you

• Examine and explore properties of individual wavelets and wavelet packets
• Examine statistics of signals and signal components
• Perform a continuous wavelet transform of a 1-D signal
• Perform discrete analysis and synthesis of 1-D and 2-D signals
• Perform wavelet packet analysis of 1-D and 2-D signals
• Compress and remove noise from signals and images

In addition to the above, the toolbox makes it easy to customize the presentation and
visualization of your data. You choose

• Which signals to display
• A region of interest to magnify
• A coloring scheme for display of wavelet coefficient details

Note All the Wavelet Analyzer app tools described here let you import information
from and export information to either the disk or workspace.
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Wavelets: Working with Images
This section provides additional information about working with images in the Wavelet
Toolbox software. It describes the types of supported images and how the MATLAB
environment represents them, as well as techniques for analyzing color images.

Understanding Images in the MATLAB Environment
The basic data structure in MATLAB is the rectangular matrix, an ordered set of real or
complex elements. This object is naturally suited to the representation of images, which
are real-valued, ordered sets of color or intensity data. (This toolbox does not support
complex-valued images.)

The word pixel is derived from picture element and usually denotes a single dot on a
computer display, or a single element in an image matrix. You can select a single pixel
from an image matrix using normal matrix subscripting. For example:

I(2,15)

returns the value of the pixel at row 2 and column 15 of the image I. By default, MATLAB
scales images to fill the display axes; therefore, an image pixel may use more than a
single pixel on the screen.

Indexed Images
A typical color image requires two matrices: a colormap and an image matrix. The
colormap is an ordered set of values that represent the colors in the image. For each
image pixel, the image matrix contains a corresponding index into the colormap. (The
elements of the image matrix are floating-point integers, or flints, which MATLAB stores
as double-precision values.)

The size of the colormap matrix is n-by-3 for an image containing n colors. Each row of
the colormap matrix is a 1-by-3 red, green, blue (RGB) color vector

color = [R G B]

that specifies the intensity of the red, green, and blue components of that color. R, G, and
B are real scalars that range from 0.0 (black) to 1.0 (full intensity). MATLAB translates
these values into display intensities when you display an image and its colormap.
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When MATLAB displays an indexed image, it uses the values in the image matrix to look
up the desired color in the colormap. For instance, if the image matrix contains the value
18 in matrix location (86,198), the color for pixel (86,198) is the color from row 18 of the
colormap.

Outside MATLAB, indexed images with n colors often contain values from 0 to n–1. These
values are indices into a colormap with 0 as its first index. Since MATLAB matrices start
with index 1, you must increment each value in the image, or shift up the image, to create
an image that you can manipulate with toolbox functions.

Wavelet Decomposition of Indexed Images
Indexed images can be thought of as scaled intensity images, with matrix elements
containing only integers from 1 to n, where n is the number of discrete shades in the
image.
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If the colormap is not provided, the Wavelet Analyzer app displays the image and
processing results using a monotonic colormap with max(max(X))-min(min(X))+1
colors.

Since the image colormap is only used for display purposes, some indexed images may
need to be preprocessed to achieve the correct results from the wavelet decomposition.

In general, color indexed images do not have linear, monotonic colormaps and need to be
converted to the appropriate gray-scale indexed image before performing a wavelet
decomposition.

How Decompositions Are Displayed

Note that the coefficients, approximations, and details produced by wavelet
decomposition are not indexed image matrices.

To display these images in a suitable way, the Wavelet Analyzer app follows these rules:

• Reconstructed approximations are displayed using the colormap map.
• The coefficients and the reconstructed details are displayed using the colormap map

applied to a rescaled version of the matrices.

RGB (Truecolor) Images
An RGB image, sometimes referred to as a truecolor image, is stored in MATLAB as an m-
by-n-by-3 data array that defines red, green, and blue color components for each
individual pixel. RGB images do not use a palette. The color of each pixel is determined by
the combination of the red, green, and blue intensities stored in each color plane at the
pixel's location. Graphics file formats store RGB images as 24-bit images, where the red,
green, and blue components are 8 bits each. This yields a potential of 16 million colors.

The precision with which a real-life image can be replicated led to the nickname
“truecolor image.” An RGB MATLAB array can be of class double, single, uint8, or
uint16. In an RGB array of class double, each color component is a value between 0
and 1.

The color components of an 8-bit RGB image are integers in the range [0, 255] rather
than floating-point values in the range [0, 1].
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Wavelet Decomposition of Truecolor Images
The truecolor images analyzed are m-by-n-by-3 arrays of uint8. Each of the three-color
components is a matrix that is decomposed using the 2-D wavelet decomposition scheme.

Other Images
Wavelet Toolbox software lets you work with some other types of images. Using the
imread function, the various tools using images try to load indexed images from files that
are not MAT files (for example, PCX files).

These tools are:

• 2-D Discrete Wavelet Analysis
• 2-D Wavelet Packet Analysis
• 2-D Stationary Wavelet Analysis
• 2-D Extension tool

For more information on the supported file types, type help imread.

Use the imfinfo function to find the type of image stored in the file. If the file does not
contain an indexed image, the load operation fails.

Image Conversion
Image Processing Toolbox software provides a comprehensive set of functions that let you
easily convert between image types. If you do not have Image Processing Toolbox
software, the examples below demonstrate how this conversion may be performed using
basic MATLAB commands.

Example 1: Converting Color Indexed Images

load xpmndrll 
whos 

Name Size Bytes Class
X2 192x200 307200 double array
map 64x3 1536 double array
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image(X2)
title('Original Color Indexed Image') 
colormap(map); colorbar

The color bar to the right of the image is not smooth and does not monotonically progress
from dark to light. This type of indexed image is not suitable for direct wavelet
decomposition with the toolbox and needs to be preprocessed.

First, separate the color indexed image into its RGB components:

R = map(X2,1); R = reshape(R,size(X2));
G = map(X2,2); G = reshape(G,size(X2));
B = map(X2,3); B = reshape(B,size(X2));

Next, convert the RGB matrices into a gray-scale intensity image, using the standard
perceptual weightings for the three-color components:

Xrgb = 0.2990*R + 0.5870*G + 0.1140*B;

Then, convert the gray-scale intensity image back to a gray-scale indexed image with 64
distinct levels and create a new colormap with 64 levels of gray:

n = 64;            % Number of shades in new indexed image 
X = round(Xrgb*(n-1)) + 1; 
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map2 = gray(n); 
figure 
image(X), title('Processed
Gray Scale Indexed Image') 
colormap(map2), colorbar

The color bar of the converted image is now linear and has a smooth transition from dark
to light. The image is now suitable for wavelet decomposition.

Finally, save the converted image in a form compatible with the Wavelet Toolbox Wavelet
Analyzer app:

baboon = X; 
map = map2; 
save baboon baboon map

Example 2: Converting an RGB TIF Image

Suppose the file myImage.tif contains an RGB image (noncompressed) of size S1xS2.
Use the following commands to convert this image:

A = imread('myImage.tif');  
% A is an S1xS2x3 array of uint8.  
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A = double(A);
Xrgb  = 0.2990*A(:,:,1) + 0.5870*A(:,:,2) + 0.1140*A(:,:,3); 
NbColors = 255; 
X = wcodemat(Xrgb,NbColors); 
map = pink(NbColors);

The same program can be used to convert BMP or JPEG files.
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Density Estimation Using Wavelets
This section takes you through the features of 1-D wavelet density estimation using one of
the Wavelet Toolbox specialized tools.

The toolbox provides Wavelet Analyzer app to estimate the density of a sample and
complement well known tools like the histogram (available from the MATLAB core) or
kernel based estimates.

For the examples in this section, switch the extension mode to symmetric padding, using
the command

dwtmode('sym')

1-D Estimation Using the Wavelet Analyzer App
1 Start the Density Estimation 1-D Tool.

From the MATLAB prompt, type waveletAnalyzer.

The Wavelet Analyzer appears.

Click the Density Estimation 1-D menu item. The discrete wavelet analysis tool for
1-D density estimation appears.
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2 Load data.

At the MATLAB command line, type

load ex1cusp1

In the Density Estimation 1-D tool, choose File > Import from Workspace.

When the Import from Workspace dialog box appears, select ex1cusp1. Click OK
to import the noisy cusp data.

The sample, a 64-bin histogram, and the processed data obtained after a binning are
displayed. In this example, we'll accept the default value for the number of bins
(250). The binned data, suitably normalized, will be processed by wavelet
decomposition.

3 Perform a Wavelet Decomposition of the binned data.

Select the sym6 wavelet from the Wavelet menu and select 4 from the Level menu,
and click the Decompose button. After a pause for computation, the tool displays the
detail coefficients of the decomposition of the binned data.
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4 Perform a density estimation.

Accept the defaults of global soft thresholding. The sliders located on the right of the
window control the level dependent thresholds, indicated by dashed blue lines
running horizontally through the graphs on the left of the window.

Continue by clicking the Estimate button.

You can see that the estimation process delivers a very irregular resulting density.
The density estimate (in purple) is the normalized sum of the signals located below it:
the approximation a4 and the reconstructed details after coefficient thresholding.

5 Perform thresholding.
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You can experiment with the various predefined thresholding strategies by selecting
the appropriate options from the menu located on the right of the window or directly
by dragging the dashed blue lines with the left mouse button. Let's try another
estimation method.

From the menu Select thresholding method, select the item By level threshold 2.
Next, click the Estimate button.

The estimated density is more satisfactory. It correctly identifies the smooth part of
the density and the cusp at 0.7.
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Importing and Exporting Information from the Wavelet
Analyzer App
The tool lets you save the estimated density to disk. The toolbox creates a MAT-file in the
current folder with a name you choose.

To save the estimated density, use the menu option File > Save Density. A dialog box
appears that lets you specify a folder and filename for storing the density. Type the name
dex1cusp. After saving the density data to the file dex1cusp.mat, load the variables
into your workspace:

load dex1cusp 
whos

Name Size Bytes Class
ex1cusp1 1x1000 8000 double array
thrParams 1x4 544 cell array
wname 1x4 8 char array
xdata 1x250 2000 double array
ydata 1x250 2000 double array

The original noisy cusp data ex1cusp1 has 1000 samples. The variables thrParams,
wname, xdata, and ydata are stored in dex1cusp.mat. The estimated density is given
by xdata and ydata. The length of these vectors is equal to the number of bins you
choose in step 4. In addition, the parameters of the estimation process are given by the
wavelet name in wname.

wname

wname = 
    sym6

and the level dependent thresholds contained in thrParams, which is a cell array of
length 4 (the level of the decomposition). For i from 1 to 4, thrParams{i} contains the
lower and upper bounds of the interval of thresholding and the threshold value (since
interval dependent thresholds are allowed). For more information, see “1-D Adaptive
Thresholding of Wavelet Coefficients”. For example, for level 1,
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thrParams{1}
ans = 
    0.0560    0.9870    2.1179

Note When you load data from a file using the menu option File > Load Data for
Density Estimate, the first 1-D variable encountered in the file is considered the signal.
Variables are inspected in alphabetical order.

At the end of this section, turn the extension mode back to zero padding using

dwtmode('zpd')
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1-D Wavelet Coefficient Selection Using the Wavelet
Analyzer App

This section takes you through the features of 1-D selection of wavelet coefficients using
one of the Wavelet Toolbox specialized tools. The toolbox provides the Wavelet Analyzer
app to explore some reconstruction schemes based on various wavelet coefficients
selection strategies:

• Global selection of biggest coefficients (in absolute value)
• By level selection of biggest coefficients
• Automatic selection of biggest coefficients
• Manual selection of coefficients

For this section, switch the extension mode to symmetric padding using the command

dwtmode('sym')

1 Start the Wavelet Coefficients Selection 1-D Tool.

From the MATLAB prompt, type waveletAnalyzer.

The Wavelet Analyzer appears.
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Click the Wavelet Coefficients Selection 1-D menu item. The discrete wavelet
coefficients selection tool for 1-D signals appears.

2 Load data.

At the MATLAB command prompt, type

load noisbump

In the Wavelet Coefficients Selection 1-D tool, select File > Import Signal from
Workspace. When the Import from Workspace dialog box appears, select the
noisbump variable. Click OK to import the noisy bumps data

3 Perform a Wavelet Decomposition.

Select the db3 wavelet from the Wavelet menu and select 6 from the Level menu,
and then click the Analyze button.
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The tool displays below the original signal (on the left) its wavelet decomposition: the
approximation coefficients A6 and detail coefficients from D6 at the top to D1 at the
bottom. In the middle of the window, below the synthesized signal (which at this step
is the same, since all the wavelet coefficients are kept) it displays the selected
coefficients.

Selecting Biggest Coefficients Globally

On the right of the window, find a column labeled Kept. The last line shows the total
number of coefficients: 1049. This is a little bit more than the number of
observations, which is 1024. You can choose the number of selected biggest
coefficients by typing a number instead of 1049 or by using the slider. Type 40 and
press Enter. The numbers of selected biggest coefficients level by level are updated
(but cannot be modified since Global is the current selection method). Then click the
Apply button. The resulting coefficients are now displayed.
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In the previous trial, the approximation coefficients were all kept. It is possible to
relax this constraint by selecting another option from the App. cfs menu
(Approximation Coefficients abbreviation). Choose the Unselect option and click the
Apply button.

None of the approximation coefficients are kept.
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From the App. cfs menu, select the Selectable option. Type 80 for the number of
selected biggest coefficients and press Enter. Then, click the Apply button.

Some of the approximation coefficients (15) have been kept.

Selecting Biggest Coefficients by Level

From the Define Selection method menu, select the By Level option. You can
choose the number of selected biggest coefficients by level or select it using the
sliders. Type 4 for the approximation and each detail, and then click the Apply
button.
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Selecting Coefficients Manually

From the Define Selection method menu, select the Manual option. The tool
displays on the left part, below the original signal, its wavelet decomposition. At the
beginning, no coefficients are kept so no selected coefficient is visible and the
synthesized signal is null.
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Select 16 coefficients individually by double clicking each of them using the left
mouse button. The color of selected coefficients switches from green to yellow for the
details and from blue to yellow for the approximation, which appear on the left of the
window and appear in yellow on the middle part. Click the Apply button.

You can deselect the currently selected coefficients by double clicking each of them.
Another way to select or deselect a set of coefficients is to use the selection box. Drag
a rubber band box (hold down the left mouse button) over a portion of the coefficient
axes (original or selected) containing all the currently selected coefficients. Click the
Unselect button located on the right of the window. Click the Apply button. The tool
displays the null signal again.

Note that when the coefficients are very close, it is easier to zoom in before selecting
or deselecting them.

Drag a rubber band box over the portion of the coefficient axes around the position
800 and containing all scales and click the Select button. Click the Apply button.

2 Using Wavelets

2-22



This illustrates that wavelet analysis is a local analysis since the signal is perfectly
reconstructed around the position 800. Check the Show Original Signal to magnify
it.

Selecting Coefficients Automatically

From the Define Selection method menu, select the Stepwise movie option. The
tool displays the same initial window as in the manual selection mode, except for the
left part of it.

Let's perform the stepwise movie using the k biggest coefficients, from k = 1 to k =
31 in steps of 1, click the Start button. As soon as the result is satisfactory, click the
Stop button.
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4 Save the synthesized signal.

The tool lets you save the synthesized signal to disk. The toolbox creates a MAT-file in
the current folder with a name you choose.

To save the synthesized signal from the present selection, use the menu option File >
Save Synthesized Signal. A dialog box appears that lets you specify a folder and
filename for storing the signal and the wavelet name.

At the end of this section, turn back the extension mode to zero padding using the
command

dwtmode('zpd')
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2-D Wavelet Coefficient Selection Using the Wavelet
Analyzer App

This section takes you through the features of 2-D selection of wavelet coefficients using
one of the Wavelet Toolbox specialized tools. The toolbox provides the Wavelet Analyzer
app to explore some reconstruction schemes based on various wavelet coefficient
selection strategies:

• Global selection of biggest coefficients (in absolute value)
• By level selection of biggest coefficients
• Automatic selection of biggest coefficients.

This section will be short since the functionality are similar to the 1-D ones examined in
the previous section.

For this section, switch the extension mode to symmetric padding using the command

dwtmode('sym')

1 Start the Wavelet Coefficients Selection 2-D Tool.

From the MATLAB prompt, type waveletAnalyzer.

The Wavelet Analyzer appears.
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Click the Wavelet Coefficients Selection 2-D menu item. The discrete wavelet
coefficients selection tool for images appears.

2 Load data.

At the MATLAB command prompt, type

load noiswom;

In the Wavelet Coefficients Selection 2-D tool, select File > Import from
Workspace. When the Import from Workspace dialog box appears, select the X
variable. Click OK to import the image.

3 Perform a Wavelet Decomposition.

Select the sym4 wavelet from the Wavelet menu and select 4 from the Level menu,
and then click the Analyze button.
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The tool displays its wavelet decomposition below the original image (on the left).
The selected coefficients are displayed in the middle of the window, below the
synthesized image (which, at this step, is the same since all the wavelet coefficients
are kept). There are 11874 coefficients, a little bit more than the original image
number of pixels, which is 96x96 = 9216.

Note The difference between 9216 and 11874 comes from the extra coefficients
generated by the redundant DWT using the current extension mode (symmetric,
'sym'). Because 96 is divisible by 24 = 16, using the periodic extension mode
('per') for the DWT, you obtain for each level the minimum number of coefficients.
More precisely, if you type dwtmode('per') and repeat steps 2 to 5, you obtain
9216 coefficients.

Selecting Biggest Coefficients Globally

On the right of the window, find a column labeled Kept. The last line shows the total
number of coefficients: 11874. This is a little bit more than the original image
number of pixels. You can choose the number of selected biggest coefficients by
typing a number instead of 11874, or by using the slider. Type 1100 and press Enter.
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The numbers of selected biggest coefficients level by level are updated (but cannot be
modified, since Global is the current selection method).

Then click the Apply button.

In the previous operation, all the approximation coefficients were kept. It is possible
to relax this constraint by selecting another option from the App. cfs menu (see “1-D
Wavelet Coefficient Selection Using the Wavelet Analyzer App” on page 2-16).

Selecting Biggest Coefficients by Level

Selecting Biggest Coefficients by Level. From the Define Selection method menu,
select the By Level option. You can choose the number of selected biggest
coefficients by level, or select it using the sliders. Type 100 for each detail, and then
click the Apply button.
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Selecting Coefficients Automatically

From the Define Selection method menu, select the Stepwise movie option. The
tool displays its wavelet decomposition on the left, below the original image. At the
beginning, no coefficients are kept so the synthesized image is null. Perform the
stepwise movie using the k biggest coefficients, from k = 144 to k = 1500, in steps
of 20. Click the Start button. As soon as the result is satisfactory, click the Stop
button.
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We've stopped the movie at 864 coefficients (including the number of approximation
coefficients).

4 Save the synthesized image.

This tool lets you save the synthesized image to disk. The toolbox creates a MAT-file
in the current folder with a name you choose.

To save the synthesized image from the present selection, use the menu option File >
Save Synthesized Image. A dialog box appears that lets you specify a folder and
filename for storing the image and, in addition, the colormap and the wavelet name.

At the end of this section, turn back the extension mode to zero padding using the
command

dwtmode('zpd')
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1-D Extension
This section takes you through the features of 1-D extension or truncation using one of
the Wavelet Toolbox utilities.

1-D Extension Using the Command Line
The function wextend performs signal extension. For more information, see its reference
page.

1-D Extension Using the Wavelet Analyzer App
1 Start the Signal Extension Tool.

From the MATLAB prompt, type waveletAnalyzer.

The Wavelet Analyzer appears.

Click the Signal Extension menu item.
2 Load data.

At the MATLAB command prompt, type
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load noisbloc;

In the Signal Extension tool, select File > Import from Workspace. When the
Import from Workspace dialog box appears, select the noisbloc variable. Click
OK to import the data

3 Extend the signal.

Enter 1300 in the Desired Length box of the extended signal, and select the Left
option from the Direction to extend menu. Then accept the default Symmetric for
the Extension mode, and click the Extend button.
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The tool displays the original signal delimited by a red box and the transformed
signal delimited by a yellow box. The signal has been extended by left symmetric
boundary values replication.

Select the Both option from the Direction to extend menu and select the
Continuous option from the Extension mode menu. Click the Extend button.
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The signal is extended in both directions by replicating the first value to the left and
the last value to the right, respectively.

Extending Signal for SWT

Since the decomposition at level k of a signal using SWT requires that 2^k divides evenly
into the length of the signal, the tool provides a special option dedicated to this kind of
extension.

Select the For SWT option from the Extension mode menu. Click the Extend button.
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Since the signal is of length 1024 = 2^10, no extension is needed so the Extend button
is ineffective.

From the File menu, choose the Example Extension option and select the last item of
the list.
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Since the signal is of length 1000 and the decomposition level needed for SWT is 10, the
tool performs a minimal right periodic extension. The extended signal is of length 1024.

Select 4 from the SWT Decomposition Level menu, and then click the Extend button.
The tool performs a minimal right periodic extension leading to an extended signal of
length 1008 (because 1008 is the smallest integer greater than 1000 divisible by 2^4 =
16).

Select 2 from the SWT Decomposition Level menu. Since 1000 is divisible by 4, no
extension is needed.

Truncating Signal

The same tool allows you to truncate a signal.

Since truncation is not allowed for the special mode For SWT, select the Periodic option
from the Extension mode menu. Type 900 for the desired length and press Enter. Click
the Truncate button.
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The tool displays the original signal delimited by a red box and the truncated signal
delimited by a yellow box. The signal has been truncated by deleting 100 values on the
right side.

Importing and Exporting Information from the Wavelet
Analyzer App
This tool lets you save the transformed signal to disk. The toolbox creates a MAT-file in
the current folder with a name you choose.

To save the transformed signal, use the menu option File > Save Transformed Signal. A
dialog box appears that lets you specify a folder and filename for storing the image. Type
the name tfrqbrk. After saving the signal data to the file tfrqbrk.mat, load the
variable into your workspace:

load tfrqbrk 
whos 

Name Size Bytes Class
tfrqbrk 1x900 7200 double array
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2-D Extension
This section takes you through the features of 2-D extension or truncation using one of
the Wavelet Toolbox utilities. This section is short since it is very similar to “1-D
Extension” on page 2-31.

2-D Extension Using the Command Line
The function wextend performs image extension. For more information, see its reference
page.

2-D Extension Using the Wavelet Analyzer App
1 Start the Image Extension Tool.

From the MATLAB prompt, type waveletAnalyzer.

The Wavelet Analyzer appears.

Click the Image Extension menu item.
2 Extend (or truncate) the image.
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From the File menu, choose the Example Extension option and select the first item
of the list.

The tool displays the original image delimited by a red box and the transformed
image delimited by a yellow box. The image has been extended by zero padding. The
right part of the window allows you to control the parameters of the extension/
truncation process for the vertical and horizontal directions, respectively. The
possibilities are similar to the 1-D ones described in “1-D Extension” on page 2-31.

Importing and Exporting Information from the Wavelet
Analyzer App
This tool lets you save the transformed image to disk. The toolbox creates a MAT-file in
the current folder with a name you choose.

To save the transformed image, use the menu option File > Save Transformed Image.

A dialog box appears that lets you specify a folder and filename for storing the image.
Type the name woman2. After saving the image data to the file woman2.mat, load the
variable into your workspace:
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load woman2 
whos

Name Size Bytes Class
woman2 200x220 352000 double array
map 253x3 6120 double array

The transformed image is stored together with its colormap.
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Image Fusion
This section takes you through the features of Image Fusion, one of the Wavelet Toolbox
specialized tools.

For the examples in this section, switch the extension mode to symmetric padding, using
the command:

dwtmode('sym')

The toolbox requires only one function for image fusion: wfusimg. You'll find full
information about this function in its reference page. For more details on fusion methods
see the wfusmat function.

In this section, you'll learn how to

• Load images
• Perform decompositions
• Merge images from their decompositions
• Restore images from their decompositions
• Save image after fusion

Since you can perform analyses either from the command line or using the Wavelet
Analyzer app, this section has subsections covering each method.

The principle of image fusion using wavelets is to merge the wavelet decompositions of
the two original images using fusion methods applied to approximations coefficients and
details coefficients (see [MisMOP03] and [Zee98] in “References” on page 1-149).

The two images must be of the same size and are supposed to be associated with indexed
images on a common colormap (see wextend to resize images).

Two examples are examined: the first one merges two different images leading to a new
image and the second restores an image from two fuzzy versions of an original image.

Image Fusion Using the Command Line
Example 1: Fusion of Two Different Images

1 Load two original images: a mask and a bust.
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load mask; X1 = X;
load bust; X2 = X;

2 Merge the two images from wavelet decompositions at level 5 using db2 by taking
two different fusion methods: fusion by taking the mean for both approximations and
details,

XFUSmean = wfusimg(X1,X2,'db2',5,'mean','mean');

and fusion by taking the maximum for approximations and the minimum for the
details.

XFUSmaxmin = wfusimg(X1,X2,'db2',5,'max','min');
3 Plot original and synthesized images.

colormap(map);
subplot(221), image(X1), axis square, title('Mask') 
subplot(222), image(X2), axis square, title('Bust') 
subplot(223), image(XFUSmean), axis square,  
title('Synthesized image, mean-mean') 
subplot(224), image(XFUSmaxmin), axis square,  
title('Synthesized image, max-min')

Example 2: Restoration by Fusion from Fuzzy Images

1 Load two fuzzy versions of an original image.
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load cathe_1; X1 = X; 
load cathe_2; X2 = X;

2 Merge the two images from wavelet decompositions at level 5 using sym4 by taking
the maximum of absolute value of the coefficients for both approximations and
details.

XFUS = wfusimg(X1,X2,'sym4',5,'max','max');
3 Plot original and synthesized images.

colormap(map);
subplot(221), image(X1), axis square,  
title('Catherine 1') 
subplot(222), image(X2), axis square,  
title('Catherine 2') 
subplot(223), image(XFUS), axis square,  
title('Synthesized image')

The synthesized image is a restored version of good quality of the common
underlying original image.

Image Fusion Using the Wavelet Analyzer App
1 Start the Image Fusion Tool.

From the MATLAB prompt, type waveletAnalyzer.
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to display the Wavelet Analyzer and then click the Image Fusion menu item to
display the Image Fusion Tool.

2 Load the original images: a mask and a bust.

load mask; X1 = X;
load bust; X2 = X;
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In the Image Fusion tool, select File > Load or Import Image 1 > Import from
Workspace. When the Import from Workspace dialog box appears, select the X1
variable, which loads the mask image.

Perform the same sequence choosing the X2 variable to load the bust image.
3 Perform wavelet decompositions.

Using the Wavelet and Level menus located to the upper right, determine the
wavelet family, the wavelet type, and the number of levels to be used for the analysis.

For this analysis, select the db2 wavelet at level 5.

Click the Decompose button.

After a pause for computation, the tool displays the two analyses.

4 Merge two images from their decompositions.

From Select Fusion Method frame, select the item mean for both Approx. and
Details. Next, click the Apply button.
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The synthesized image and its decomposition (which is equal to the fusion of the two
decompositions) appear. The new image produced by fusion clearly exhibits features
from the two original ones.

Let us now examine another example illustrating restoration using image fusion.
5 Restore the image using image fusion.

From the File menu, load Image 1 by selecting the MAT-file cathe_1.mat, and
Image 2 by selecting the MAT-file cathe_2.mat.

6 Using the Wavelet and Level menus, select the sym4 wavelet at level 5. Click the
Decompose button.

7 From Select Fusion Method frame, select the item max for both Approx. and
Details. Next, click the Apply button.
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The synthesized image is a restored version of good quality of the common
underlying original image.

Saving the Synthesized Image

The Image Fusion Tool lets you save the synthesized image to disk. The toolbox creates a
MAT-file in the current folder with a name you choose.

To save the synthesized image from the present selection, use the menu option File >
Save Synthesized Image.

A dialog box appears that lets you specify a folder and filename for storing the image.
After you save the image data to the file rescathe.mat, the synthesized image is given
by X and the colormap by map.
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1-D Fractional Brownian Motion Synthesis
This section takes you through the features of 1-D Fractional Brownian Motion Synthesis
using one of the Wavelet Toolbox specialized tools.

For the examples in this section, switch the extension mode to symmetric padding, using
the command

dwtmode('sym')

The toolbox requires only one function to generate a fractional Brownian motion signal:
wfbm. You'll find full information about this function in its reference page.

In this section, you'll learn how to

• Generate a fractional Brownian motion signal
• Look at its main properties
• Save the synthesized signal

Since you can perform the generation either from the command line or using the Wavelet
Analyzer app, this section has subsections covering each method.

A fractional Brownian motion (fBm) is a continuous-time Gaussian process depending on
the Hurst parameter 0 < H < 1. It generalizes the ordinary Brownian motion
corresponding to H = 0.5 and whose derivative is the white noise. The fBm is self-similar
in distribution and the variance of the increments is given by

Var(fBm(t)-fBm(s)) = v |t-s|^(2H)

where v is a positive constant.

Fractional Brownian Motion Synthesis Using the Command
Line
According to the value of H, the fBm exhibits for H > 0.5, long-range dependence and for
H < 0.5, short or intermediate dependence.

Let us give an example of each situation using the wfbm file, which generates a sample
path of this process.

% Generate fBm for H = 0.3 and H = 0.7  
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% Set the parameter H and the sample length 
H = 0.3; lg = 1000; 
% Generate and plot wavelet-based fBm for H = 0.3
fBm03 = wfbm(H,lg,'plot');

% Generate and plot wavelet-based fBm for H = 0.7 
fBm07 = wfbm(H,lg,'plot');

% The last step is equivalent to 
% Define wavelet and level of decomposition
% w = ' db10'; ns = 6; 
% Generate 
% fBm07 = wfbm(H,lg,'plot',w,ns);

It appears that fBm07 clearly exhibits a stronger low-frequency component and has,
locally, a less irregular behavior.

Fractional Brownian Motion Synthesis Using the Wavelet
Analyzer App
1 Start the Fractional Brownian Motion Synthesis Tool.

From the MATLAB prompt, type waveletAnalyzer.

The Wavelet Analyzer appears. Click Fractional Brownian Generation 1-D to
display the 1-D Fractional Brownian Motion Synthesis Tool.
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2 Generate fBm.
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From the Fractal Index edit box, type 0.3 and from the Seed frame, select the item
State and set the value to 0. Next, click the Generate button.

The synthesized signal exhibits a locally highly irregular behavior.
3 Now let us try another value for the fractal index. From the Fractal Index edit box,

type 0.7 and from the Seed frame, select the item State and set the value to 0. Next,
click the Generate button.
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The synthesized signal clearly exhibits a stronger low-frequency component and has
locally a less irregular behavior. These properties can be investigated by clicking the
Statistics button.

Saving the Synthesized Signal
The Fractional Brownian Motion Synthesis Tool lets you save the synthesized signal to
disk. The toolbox creates a MAT-file in the current folder with a name you choose.

To save the synthesized signal from the present selection, use the option File > Save
Synthesized Signal. A dialog box appears that lets you specify a folder and filename for
storing the signal. After saving the signal data to the file fbm07.mat, load the variables
into workspace.

load fbm07 
whos

Name Size Bytes Class
FBM_PARAMS 1x1 1296 struct array
fbm07 1x1000 8000 double array

2 Using Wavelets

2-52



FBM_PARAMS

FBM_PARAMS =  

  struct with fields:

          SEED: [1x1 struct] 
           Wav: 'db10'
        Length: 1000 
             H: 0.7000 
    Refinement: 6

The synthesized signal is given by fbm07. In addition, the parameters of the generation
are given by FBM_PARAMS, which is a structure array with five fields.
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New Wavelet for CWT
This section takes you through the features of New Wavelet for CWT, one of the Wavelet
Toolbox specialized tools.

The toolbox requires only one function to design a new wavelet adapted to a given pattern
for CWT: pat2cwav. You'll find full information about this function in its reference page.

In this section, you'll learn how to

• Load a pattern
• Synthesize a new wavelet adapted to the given pattern
• Detect patterns by CWT using the adapted wavelet
• Compare the detection using both the adapted wavelet and well-known wavelets
• Save the synthesized wavelet

Since you can perform the design of the new wavelet for CWT either from the command
line or using the Wavelet Analyzer app, this section has subsections covering each
method.

The principle for designing a new wavelet for CWT is to approximate a given pattern
using least squares optimization under constraints leading to an admissible wavelet well
suited for the pattern detection using the continuous wavelet transform (see [MisMOP03]
in “References” on page 1-149).

New Wavelet for CWT Using the Command Line
This example illustrates how to generate a new wavelet starting from a pattern.

Load an original pattern: a pseudo sine.

load ptpssin1
who

Your variables are:

IntVAL   X        Y        caption  

The variables X and Y contain the pattern. Integrate the pattern over the interval [0, 1].
Plot the pattern.
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dX = max(diff(X));
patternInt = dX*sum(Y);
disp(['Integral of pattern = ',num2str(patternInt)]);

Integral of pattern = 0.15915

plot(X,Y)
title('Original Pattern')
grid on

The pattern on the interval [0, 1] integrates to 0.15915. So it is not a wavelet but it is a
good candidate since it oscillates like a wavelet.
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To synthesize a new wavelet adapted to the given pattern, use a least squares polynomial
approximation of degree 6 with constraints of continuity at the beginning and the end of
the pattern.

[psi,xval,nc] = pat2cwav(Y, 'polynomial',6, 'continuous');

The new wavelet is given by xval and nc*psi.

figure
plot(X,Y,'-',xval,nc*psi,'--')
grid on
legend('Original Pattern','Adapted Wavelet','Location','NorthWest')
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To be used in the CWT algorithm, the new wavelet must have square norm equal to 1.
Confirm the new wavelet has square norm equal to 1.

dxval = max(diff(xval));
newWaveletSqN = dxval*sum(psi.^2);
disp(['New wavelet has square norm = ',num2str(newWaveletSqN)])

New wavelet has square norm = 1

New Wavelet for CWT Using the Wavelet Analyzer App
1 Start the New Wavelet for CWT Tool.

From the MATLAB prompt, type waveletAnalyzer.

The Wavelet Analyzer appears. Click the New Wavelet for CWT menu item to
display the Pattern Adapted Admissible Wavelet Design Tool.
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2 Load the original pattern. In the Pattern Adapted Admissible Wavelet Design
tool, from the File menu, choose Load Pattern. When the Load Pattern dialog box
appears, navigate to matlabroot/toolbox/wavelet/wavelet where matlabroot
is the MATLAB root folder. Select ptpssin1.mat. Click the OK button.

The MAT-file defining the pattern can contain more than one variable. In that case,
the variable Y is considered if it exists; otherwise, the first variable is considered.
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The selected pattern denoted by F is defined on the interval [0,1] and is of integral
0.1592. It is not a wavelet, but it is a good candidate because it oscillates like a
wavelet.

3 Perform pattern approximation.

Accept the default parameters leading to use a polynomial of degree 3 with
constraints of continuity at the borders 0 and 1, to approximate the pattern F. Click
the Approximate button.

After a pause for computation, the tool displays the new wavelet in green
superimposed with the original pattern in red.
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The result is not really satisfactory. A solution is to increase the polynomial degree to
fit better the pattern.

4 Using the Polynomial Degree menu, increase the degree by selecting 6. Then click
the Approximate button again.
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The result is now of good quality and can be used for pattern detection.
5 Pattern detection using the new wavelet.

Click the Run button.

After a pause for computation, the tool displays the running signal and the pattern
detection by CWT using the adapted wavelet.
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The running signal is the superimposition of two dilated and translated versions of
the pattern F, namely F((t-20)/8) and F((t-40)/4). The two pairs (position,
scale) to be detected are given by (20,8) and (40,4) and are materialized by dashed
lines in the lower right graph of the contour plot of the CWT. The detection is perfect
because the two local maxima of the absolute values of the continuous wavelet
coefficients fit perfectly.

6 Using the Running signal frame, select the Noise check box to add an additive
noise to the previous signal. Click the Run button again.
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The quality of the detection is not altered at all.
7 Compare the adapted wavelet and well-known wavelets.

Let us now compare the performance for pattern detection of the adapted wavelet
versus well-known wavelets. Click the Compare button. A new window appears.
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This tool displays the pattern detection performed with the adapted wavelet on the
left and db1 wavelet (default) on the right. The two positions are perfectly detected
in both cases but scales are slightly underestimated by the db1 wavelet.

The tool allows you to generate various running signals and choose the wavelet to be
compared with the adapted one.

Click the Close button to get back to the main window.

Saving the New Wavelet
The New Wavelet for CWT Tool lets you save the synthesized wavelet. The toolbox creates
a MAT-file in the current folder with a name you choose.

To save the new wavelet from the present selection, use the option File > Save Adapted
Wavelet. A dialog box appears that lets you specify a folder and filename for storing the
data. After you save the wavelet data to the file newwavel.mat, the adapted wavelet is
given by X and Y.
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Note that the version of the saved wavelet is correctly defined to be used in the CWT
algorithm and is such that its square norm is equal to 1.
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Getting Started with Wavelet
Analysis

• “Wavelet Families and Properties” on page 3-2
• “Visualizing Wavelets, Wavelet Packets, and Wavelet Filters” on page 3-5
• “Continuous Wavelet Analysis” on page 3-9
• “Continuous Wavelet Transform and Inverse Continuous Wavelet Transform”

on page 3-11
• “Discrete Wavelet Analysis” on page 3-16
• “Lifting” on page 3-25
• “Critically Sampled Wavelet Packet Analysis” on page 3-32
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Wavelet Families and Properties
This example shows how to find and display information about available wavelets. The
Wavelet Toolbox software contains an extensive selection of the most commonly-used
wavelets and orthogonal and biorthogonal wavelet filters. You also have the ability to add
your own filters to the toolbox.

Determine the existing wavelet families. Display the wavelet family names in the
command window.

waveletfamilies('f')

Display the names of all available wavelets in each family.

waveletfamilies('a')

You can also use wavemngr to display the available wavelet families.

wavemngr('read')

Use the wavelet family short name to determine what analysis an existing wavelet
supports.

The wavelet family short name for the Daubechies extremal-phase wavelets is 'db'.

waveinfo('db')

Determine what analysis the Morlet wavelet supports. The wavelet family short name is
'morl'.

waveinfo('morl')

Use the Wavelet Toolbox Wavelet Analyzer app to investigate wavelet families. To start
the interactive tool, enter waveletAnalyzer at the command line.
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Click Wavelet Display. Select the db4 wavelet and click Display.
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See Also

More About
• “Visualizing Wavelets, Wavelet Packets, and Wavelet Filters” on page 3-5
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Visualizing Wavelets, Wavelet Packets, and Wavelet
Filters

This example shows how to use wfilters, wavefun, and wpfun to obtain the filters,
wavelet, or wavelet packets corresponding to a particular wavelet family. You can
visualize 2-D separable wavelets with wavefun2.

Obtain the decomposition (analysis) and reconstruction (synthesis) filters for the
biorthogonal spline wavelet filters with 3 vanishing moments in the reconstruction filter
and 5 vanishing moments in the decomposition filter.

[LoD,HiD,LoR,HiR] = wfilters('bior3.5');
subplot(2,2,1)
stem(LoD,'markerfacecolor',[0 0 1]); title('Lowpass Decomposition Filter');
subplot(2,2,2)
stem(LoR,'markerfacecolor',[0 0 1]); title('Lowpass Reconstruction Filter');
subplot(2,2,3)
stem(HiD,'markerfacecolor',[0 0 1]); title('Highpass Decomposition Filter');
subplot(2,2,4)
stem(HiR,'markerfacecolor',[0 0 1]); title('Highpass Reconstruction Filter');
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Visualize the real-valued Morlet wavelet. There is no associated scaling function.

figure
[psi,xval] = wavefun('morl');
plot(xval,psi,'linewidth',2)
title('$\psi(x) = e^{-x^2/2} \cos{(5x)}$','Interpreter','latex',...
     'fontsize',14);
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Obtain the first 4 wavelet packets for the Daubechies least-asymmetric wavelet with 4
vanishing moments, sym4.

[wpws,x] = wpfun('sym4',4,10);
for nn = 1:size(wpws,1)
    subplot(3,2,nn)
    plot(x,wpws(nn,:))
    axis tight
    title(['W',num2str(nn-1)]);
end
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See Also
cwtfilterbank | dwtfilterbank
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Continuous Wavelet Analysis
This example shows how to perform time-frequency analysis using the continuous wavelet
transform (CWT). Continuous wavelet analysis provides a time-scale/time-frequency
analysis of signals and images. The Wavelet Toolbox™ software has both command line
and interactive functionality to support continuous wavelet analysis of 1-D signals.

Construct a signal consisting of two sinusoids with frequencies of 100 and 50 Hz. The
support of the two sinusoids is disjoint. The 100-Hz sine wave begins at t = 0 and has a
duration of 1 second. The 50-Hz sinusoid begins at three seconds and has a duration of
two seconds.

Fs = 1000;
t = linspace(0,5,5e3);
x = cos(2*pi*100*t).*(t<1)+cos(2*pi*50*t).*(3<t)+0.3*randn(size(t));

Obtain the CWT and plot its scalogram

cwt(x,Fs);
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See Also
cwt | cwtfilterbank

More About
• “Time-Frequency Analysis with the Continuous Wavelet Transform”
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Continuous Wavelet Transform and Inverse Continuous
Wavelet Transform

This example shows how to use the continuous wavelet transform (CWT) and inverse
CWT.

CWT of Sine Waves and Impulses

Create and plot a signal consisting of two disjoint sine waves with frequencies of 100 and
50 Hz punctuated by two impulses. The sampling frequency is 1 kHz and the total signal
duration is one second. The 100-Hz sine wave occurs over the first 250 milliseconds of the
data. The 50-Hz sinusoid occurs over the last 500 milliseconds. The impulses occur at 650
and 750 milliseconds. The signal also has N(0, 0 . 12) additive white Gaussian noise. The
impulse at 650 milliseconds is visible, but the impulse at 750 milliseconds is not clearly
evident in the time-domain data.

Fs = 1000;
t = 0:1/Fs:1-1/Fs;
x = zeros(size(t));
x([625,750]) = 2.5;
x = x+ cos(2*pi*100*t).*(t<0.25)+cos(2*pi*50*t).*(t>=0.5)+...
    0.1*randn(size(t));
plot(t.*1000,x)
grid on;
xlabel('msec'); ylabel('Amplitude');
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Obtain and plot the CWT using the default analytic Morse wavelet.

[cfs,f] = cwt(x,1000);
contour(t.*1000,f,abs(cfs));
xlabel('msec'); ylabel('Hz');
grid on;
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The CWT moduli correctly show the supports of the disjoint sinusoids and the locations of
the impulses at 650 and 750 milliseconds. In the CWT moduli, the impulse at 750
milliseconds is clearly visible. This is especially true if you plot just the finest-scale
wavelet coefficients.

plot(t.*1000,abs(cfs(1,:)))
grid on
title('Fine-Scale Wavelet Coefficient Moduli')
xlabel('msec')
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Frequency-Localized Inverse CWT

Using the inverse CWT you can construct frequency-localized approximations to events in
your time series. Use the inverse CWT to obtain an approximation to the 100-Hz sinusoid
in the previous example.

xrec = icwt(cfs,f,[90 110]);
plot(t,x);
hold on;
plot(t,xrec,'r');
legend('Original Signal','Inverse CWT Approximation',...
    'Location','NorthEast');
grid on;
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If you zoom in on the plot, you see the 100-Hz component is well approximated but the
50-Hz component has been removed.
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Discrete Wavelet Analysis
Wavelet Toolbox software enables you to analyze signals, images, and 3-D data using
orthogonal and biorthogonal critically-sampled discrete wavelet analysis. Critically-
sampled discrete wavelet analysis is also known as decimated discrete wavelet analysis.
Decimated discrete wavelet analysis is most appropriate for data compression, denoising,
and the sparse representation of certain classes of signals and images.

In decimated discrete wavelet analysis, the scales and translations are dyadic.

You can perform 1-D, 2-D, and 3-D decimated discrete wavelet analysis using the
interactive tool by entering waveletAnalyzer at the command line and clicking
Wavelet 1-D, Wavelet 2-D, or Wavelet 3-D.

1-D Wavelet Denoising
This example shows how to denoise a signal using discrete wavelet analysis.

Create a reference signal.

len = 2^11;
h = [4  -5  3  -4  5  -4.2   2.1   4.3  -3.1   5.1  -4.2];
t = [0.1  0.13  0.15  0.23  0.25  0.40  0.44  0.65  0.76  0.78  0.81];
h  = abs(h);
w  = 0.01*[0.5 0.5 0.6 1 1 3 1 1 0.5 0.8 0.5];
tt = linspace(0,1,len);
xref = zeros(1,len);
for j=1:11
    xref = xref+(h(j)./(1+((tt-t(j))/w(j)).^4));
end

Add zero-mean white Gaussian noise with a variance of 0.25.

rng default
x = xref + 0.5*randn(size(xref));
plot(x)
axis tight
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Denoise the signal down to level 3 using the Daubechies least asymmetric wavelet with 4
vanishing moments. Use the universal threshold selection rule of Donoho and Johnstone
with soft thresholding based on the DWT coefficients at level 1. Use the periodization
signal extension mode — dwtmode('per'). Plot the result along with the reference
signal for comparison.

dwtmode('per');

                                         
*****************************************
**  DWT Extension Mode: Periodization  **
*****************************************
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xd = wdenoise(x,3,'Wavelet','sym4',...
    'DenoisingMethod','UniversalThreshold','NoiseEstimate','LevelIndependent');
plot(xd)
axis tight
hold on
plot(xref,'r')
legend('Denoised','Reference')

2-D Decimated Discrete Wavelet Analysis
This example shows how to obtain the 2-D DWT of an input image.
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Load and display the image. The image consists of vertical, horizontal, and diagonal
patterns.

load tartan;
imagesc(X); colormap(gray);

Obtain the 2-D DWT at level 1 using the biorthogonal B-spline wavelet and scaling filters
with 2 vanishing moments in the analysis filters and 4 vanishing moments in the synthesis
filters. Extract the horizontal, vertical, and diagonal wavelet coefficients and the
approximation coefficients. Display the results.

[C,S] = wavedec2(X,1,'bior2.4');
[H,V,D] = detcoef2('all',C,S,1);
A = appcoef2(C,S,'bior2.4');
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subplot(221);
imagesc(A); title('Approximation Level 1');
colormap(gray);
subplot(222);
imagesc(H); title('Horizontal Details');
subplot(223);
imagesc(V); title('Vertical Details');
subplot(224);
imagesc(D); title('Diagonal Details');

You see that the wavelet details are sensitive to particular orientations in the input image.
The approximation coefficients are a lowpass approximation to the original image.
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Nondecimated Discrete Wavelet Analysis
This example shows how to obtain the nondecimated (stationary) wavelet transform of a
noisy frequency-modulated signal.

Load the noisy Doppler signal and obtain the stationary wavelet transform down to level
4.

load noisdopp
swc = swt(noisdopp,4,'sym8');

Plot the original signal and the level 1 and 3 wavelet coefficients. Plot the level 4
approximation.

subplot(4,1,1)
plot(noisdopp)
subplot(4,1,2)
plot(swc(1,:))
ylabel('D1')
set(gca,'ytick',[])
subplot(4,1,3)
plot(swc(3,:))
ylabel('D3')
set(gca,'ytick',[])
subplot(4,1,4)
plot(swc(5,:))
ylabel('A4')
set(gca,'ytick',[])
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The wavelet and approximation coefficients at each level are equal in length to the input
signal. The additive noise is almost entirely localized in the level one detail coefficients.
The level 3 detail coefficients capture the high-frequency oscillations at the beginning of
the Doppler signal. The level 4 approximation coefficients are a lowpass approximation to
the Doppler signal.

Obtain the 2-D nondecimated wavelet transform of an image. Use the Daubechies least
asymmetric wavelet, sym4, and obtain the multiresolution analysis down to level 3. Load
the image. Use wcodemat to scale the matrix for display.

load tartan
nbcol = size(map,1);
cod_X = wcodemat(X,nbcol);
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Obtain the nondecimated multiresolution analysis down to level 3.

[ca,chd,cvd,cdd] = swt2(X,3,'sym4');

Display the original image and the approximation and detail coefficients at each level.

figure
subplot(2,2,1)
image(cod_X)
title('Original Image')
colormap(map)

for k = 1:3
    cod_ca  = wcodemat(ca(:,:,k),nbcol);
    cod_chd = wcodemat(chd(:,:,k),nbcol);
    cod_cvd = wcodemat(cvd(:,:,k),nbcol);
    cod_cdd = wcodemat(cdd(:,:,k),nbcol);
    decl = [cod_ca,cod_chd;cod_cvd,cod_cdd];
    
    subplot(2,2,k+1)
    image(decl)
    
    title(['SWT: Approx. ', ...
        'and Det. Coefs (Lev. ',num2str(k),')'])
    colormap(gray)
end
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See Also
dwtfilterbank | modwt | modwtmra | swt | swt2 | wavedec | wavedec2 | wdenoise |
wdenoise2
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Lifting
This example shows how to use lifting on a 1-D signal.

Create a 1-D signal that is piecewise constant over 2 samples. Add N(0, 0 . 12) noise to the
signal.

x = [1 1 2 2 -3.5 -3.5 4.3 4.3 6 6 -4.5 -4.5 2.2 2.2 -1.5 -1.5];
x = repmat(x,1,64);
rng default
x = x+ 0.1*randn(size(x));

Plot the signal and zoom in on the first 100 samples to visualize the correlation in
neighboring samples.

plot(x)
xlim([0 100])
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Use the lazy wavelet to obtain the even and odd polyphase components of the signal.

LS = liftwave('lazy');
[A,D] = lwt(x,LS);

If you plot the detail (wavelet) coefficients in D, you see that this transform has not
decorrelated the signal. The wavelet coefficients look very much like the signal.

Add a dual lifting step that subtracts the even-indexed coefficient from the odd-coefficient
one sample later, x(2n + 1)− x(2n).

els = {'d',-1,0};
LSnew = addlift(LS,els);
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Because the signal is piecewise constant over consecutive samples with additive noise,
the new dual lifting step should result in wavelet coefficients small in absolute value. In
this case, the wavelet transform does decorrelate the data. Verify this by finding the
approximation and detail coefficients with the new dual lifting step.

[A,D] = lwt(x,LSnew);

If you plot the detail (wavelet) coefficients, you see that the wavelet coefficients no longer
resemble the original signal.

The approximation coefficients, A, of the previous transform constitute the even
polyphase component of the signal. Therefore, the coefficients are affected by aliasing.
Use a primal lifting step to update the approximation coefficients and reduce aliasing. The
primal step replaces the approximation coefficients by x(2n) + 1/2(x(2n + 1)− x(2n)),
which is equal to the average of x(2n) and x(2n + 1). The averaging is a lowpass filtering,
which helps to reduce aliasing.

els = {'p',1/2, 0};
LSnew = addlift(LSnew,els);

Use the updated lifting scheme to obtain the wavelet transform of the input signal.

[A,D] = lwt(x,LSnew);

Add the appropriate scaling to ensure perfect reconstruction. Obtain the approximation
and wavelet coefficients using lifting and reconstruct the signal using ilwt. Verify perfect
reconstruction.

LSnew(end,:) = {sqrt(2),sqrt(2)/2,[]};
[A,D] = lwt(x,LSnew);
x1 = ilwt(A,D,LSnew);
max(abs(x1-x))

ans = 1.7764e-15

The preceding example designed a wavelet, which effectively removed a zeroth order
polynomial (constant). If the behavior of the signal is better represented by a higher-order
polynomial, you can design a dual wavelet with the appropriate number of vanishing
moments to decorrelate the signal.

Use the lifting scheme to design a wavelet with 2 vanishing moments. A dual wavelet with
2 vanishing moments decorrelates a signal with local behavior approximated by a first-
order polynomial. Create a signal characterized by first-order polynomial behavior with
additive N(0, 0 . 252) noise.
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y = [1 0 0 4 0 0 -1 0 0 2 0 0 7 0 0 -4 0 0 1 0 0 -3];
x1 = 1:(21/1024):22-(21/1024);
y1 = interp1(1:22,y,x1,'linear');
rng default
y1 = y1+0.25*randn(size(y1));
plot(x1,y1)
xlim([1 22])

In this case, the wavelet coefficients should remove a first-order polynomial. If the signal
value at an odd index, x(2n + 1), is well approximated by a first-order polynomial fitted to
the surrounding sample values, then 1/2(x(2n) + x(2n + 2)) should provide a good fit for
x(2n + 1). In other words, x(2n + 1) should be the midpoint between x(2n) and x(2n + 2).

It follows that x(2n + 1)− 1/2(x(2n) + x(2n + 2)) should decorrelate the signal.
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Start with the lazy wavelet transform and add a dual lifting step which models the
preceding equation.

LS = liftwave('lazy');
els = {'d',[-1/2 -1/2],1};
LSnew = addlift(LS,els);

Use the lifting scheme to obtain the approximation and detail coefficients and plot the
result.

[A,D] = lwt(y1,LSnew);
subplot(2,1,1)
plot(A)
xlim([1 512])
title('Approximation Coefficients')
subplot(2,1,2)
plot(D)
xlim([1 512])
title('Detail Coefficients')
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You see that the wavelet coefficients appear to only contain noise, while the
approximation coefficients represent a denoised version of the original signal. Because
the preceding transform uses only the even polyphase component for the approximation
coefficients, you can reduce aliasing by adding a primal lifting step. Finally, add the
normalization constants to produce a perfect reconstruction filter bank.

Obtain the discrete wavelet transform with the new lifting scheme and plot the results.

els = {'p',[1/4 1/4],0};
LSnew = addlift(LSnew,els);
LSnew(end,:) = {sqrt(2),sqrt(2)/2,[]};
[A,D] = lwt(y1,LSnew);
subplot(2,1,1)
plot(A)
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xlim([1 512])
title('Approximation Coefficients')
subplot(2,1,2)
plot(D)
xlim([1 512])
title('Detail Coefficients')

Demonstrate that you have designed a perfect reconstruction filter bank.

y2 = ilwt(A,D,LSnew);
max(abs(y2-y1))

ans = 8.8818e-16
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Critically Sampled Wavelet Packet Analysis
This example shows how to obtain the wavelet packet transform of a 1-D signal. The
example also demonstrates that frequency ordering is different from Paley ordering.

Create a signal consisting of a sine wave with a frequency of 7π/8 radians/sample in
additive white Gaussian N(0,1/4) noise. The sine wave occurs between samples 128 and
512 of the signal.

rng default;
dwtmode('per');

 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!  WARNING: Change DWT Extension Mode  !
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
                                         
*****************************************
**  DWT Extension Mode: Periodization  **
*****************************************
                                         

n = 0:1023;
indices = (n>127 & n<=512);
x = cos(7*pi/8*n).*indices+0.5*randn(size(n));

Obtain the wavelet packet transform down to level 2 using the Daubechies least
asymmetric wavelet with 4 vanishing moments. Plot the wavelet packet tree.

T = wpdec(x,2,'sym4');
plot(T);
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Find the Paley and frequency ordering of the terminal nodes.

[tn_pal,tn_freq] = otnodes(T);

tn_freq contains the vector [3 4 6 5], which shows that the highest frequency
interval, [3π/4, π), is actually node 5 in the Paley-ordered wavelet packet tree.

Click on node (2,2) in the wavelet packet tree to see that the frequency ordering correctly
predicts the presence of the sine wave.
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The wavelet packet transform of a 2-D image yields a quaternary wavelet packet tree.
Load an example image. Use the biorthogonal B-spline wavelet with 3 vanishing moments
in the reconstruction wavelet and 5 vanishing moments in the decomposition wavelet.
Plot the resulting quaternary wavelet packet tree.
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load tartan;
T = wpdec2(X,2,'bior3.5');
plot(T);
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